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Abstract

Supersymmetric theories with 8 supercharges provide a unique playground for studying non-perturbative

effects in quantum field theories, balancing control with rich physical phenomena. When studying

their moduli spaces, one can make use of a duality between the Coulomb branch of a 3d magnetic

theory and the Higgs branch of a 3, 4, 5 and 6d electric theory via the tool of magnetic quivers.

While finding a magnetic quiver for a single theory is straightforward in most cases, identifying them

for entire families of theories is a significant challenge. This work provides a pedagogical introduction

to theories with 8 supercharges and systematically extends the magnetic quiver analysis to a wider

range of families. We find a pattern for balanced An type quivers, with flavour nodes only on the

outside gauge nodes of the electric quiver, where different coupling phases correspond to integer par-

titions of n+1, which in turn define the magnetic quiver and its global symmetry. We also analyse a

subset of general A2 quivers at finite coupling. Finally, to handle more complex cases, we introduce

a Python library that automates the computation of magnetic quivers from brane webs. We apply

this to make progress on A2 quivers, whose toric diagram is convex, at infinite coupling.
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0. Introduction

”The mathematician plays a game in which he himself invents the rules while the physicist

plays a game in which the rules are provided by nature, but as time goes on it becomes

increasingly evident that the rules which the mathematician finds interesting are the same

as those which nature has chosen.”

— Paul A. M. Dirac

Quantum field theory has been remarkably successful over the past century, but its strongly

coupled regimes are still poorly understood as conventional perturbative methods falter. This ne-

cessitates the development of a new set of tools to tackle these complex problems. One powerful

approach is to include supersymmetry. This gives us a tight handle on the strongly coupled dynam-

ics; however, too much supersymmetry renders our theories too rigid, not allowing for the necessary

field contents that give rise to interesting phenomena.

A particularly fruitful area of study is the set of theories with 8 supercharges – 3d N = 4, 4d

N = 2, 5d N = 1, and 6d N = (1, 0). These offer a unique balance between being sufficiently

constrained and yet still dynamic enough to be interesting, a feature first demonstrated in the work

of Seiberg and Witten on 4d N = 2 theories [1, 2]. This richness is most evident in the structure of

their moduli spaces. While in the standard model, the Higgs boson’s vacuum expectation value (vev)

parameterises a simple circle, in theories with 8 supercharges, we have a remarkable landscape of

sophisticated geometries, including symplectic singularities, closures of nilpotent orbits, and hyper-

Kähler manifolds. The presence of singular spaces is not merely a mathematical curiosity, but it

also allows for novel phenomena, such as partial-Higgsing [3], where gauge symmetries can break

in intricate ways. We will generally view the moduli spaces as algebraic varieties; this perspective

creates a strong synergy between physics and mathematics as the vast and rigorous toolkit of algebraic

geometry becomes available to us.

In general, the moduli space splits into two branches: the Coulomb branch parameterised by vevs

of the vector multiplets, and the Higgs branch parameterised by vevs of the hypermultiplets. The

Higgs branch is, in most cases, protected from quantum corrections and can be, when a Lagrangian

description exists, constructed as a hyper-Kähler quotient. On the other hand, the Coulomb branch

is not protected and thus more complex to deal with. There are various tools to study the Coulomb

branch. For 4d N = 2 theories, we have the Seiberg-Witten curves [2], and for 3d N = 4 theories,

we have the monopole formula [4].
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0. Introduction

In studying many of these supersymmetric theories, particularly for strong coupling regimes, we

will have to depart from the usual approach of writing down a Lagrangian, as such a description

might not even exist. Instead, we will use a quiver diagram which conveniently encodes the gauge and

flavour symmetries as well as the field content and its representations under the relevant symmetries

[5].

Another crucial aspect of these theories is their connection to string theory, which provides el-

egant constructions for many of them. They can be engineered either as the compactification of a

higher-dimensional framework (see, for example, [6]), or as the worldvolume theory on a system of

intersecting branes (for 3d, see [7]; for 4d, see [8]; for 5d, see [9, 10]; and for 6d, see [11]). A lot of

emphasis is put on the brane construction point of view - mostly for 3d and 5d - as it offers a remark-

ably powerful and intuitive picture. For example, there are various dualities which find a natural

explanation in terms of brane dynamics. One of these is 3d mirror symmetry, where the Coulomb

branch of one theory is the same as the Higgs branch of another, and vice versa. This phenomenon

has a straightforward interpretation as deformations of brane systems via Hanany-Witten transitions

[7]. Furthermore, the brane systems can often quickly be translated into a quiver diagram, giving us

a comprehensive set of tools to investigate them.

A particularly important theme of this dissertation will be the set of 5d N = 1 theories. These

have the peculiar property that naively they are non-renormalisable, as the coupling constant has

a negative mass dimension. But, as shown by Seiberg and collaborators in [12, 13, 14], there exist

non-trivial UV fixed points where the theory flows to a superconformal field theory. At this fixed

point, instanton states become massless and contribute to the Higgs branch of the theory, leading to

global symmetry enhancement.

Due to this effect, we are especially interested in the Higgs branch of 5-dimensional theories.

At finite coupling, the Higgs branch is simply a hyper-Kähler quotient, if a Lagrangian description

exists, but at infinite coupling, we require the technology of magnetic quivers [15]. They are based

on the conjecture that the Higgs branch for any electric theory in d = 3, 4, 5, 6 is equivalent to the

Coulomb branch of a magnetic theory in d = 3. And, as it turns out, this method is not only good

for the infinite coupling case, but also holds for finite coupling. This is useful when the Lagrangian

description does not exist, but also means we have one tool which we can freely use for all cases.

Additionally, since the scalars parameterising the Higgs branch, upon acquiring a vev, induce the

Higgs mechanism, the structure of the Higgs branch gives us physical insight into the pattern of

gauge symmetry breaking. This pattern can be computed using the quiver subtraction algorithm,

where we can subtract certain quivers called elementary slices from the magnetic quiver to identify

the pattern of partial-Higgsing [3].

Aim: The goal of this dissertation is twofold:

(i) We provide a thorough introduction to theories with 8 supercharges, and in particular the 5d

N = 1 case.
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(ii) We extend the magnetic quiver analysis to new types of 5d N = 1 families.

Organisation: In accordance with the overall aims, this dissertation is split into two parts. Part

I gives a pedagogical introduction to theories with 8 supercharges. This includes:

(i) Mathematical discussions about representation theory and algebraic geometry in chapters

1 and 2. This is to set a language and formalism that permeates throughout the entire

dissertation.

(ii) The basics of supersymmetric theories with 8 supercharges, such as their field content and

moduli space structure in chapter 3.

(iii) Brane system constructions of theories with 8 supercharges in d = 3, 5 in chapters 4 and 5.

(iv) More contemporary tools in the analysis of quiver gauge theories in chapter 6.

Applying the methods covered in part I, part II examines the magnetic quiver analysis for certain

families of quivers. This includes:

(i) A pattern of balanced quivers of type An with flavour nodes only on the outside gauge nodes

in chapter 7.

(ii) An analysis of various cases for general quivers of type A2 at finite coupling in chapter 8.

(iii) Magnetic quivers for theories of type A2, whose toric diagram is convex, at infinite coupling in

chapter 10. Enabling this analysis is a Python library we created to algorithmically compute

magnetic quivers from brane webs; this is discussed in chapter 9.
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Part I

Preliminaries and Methods
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1. Representation theory

Let us begin by briefly examining some of the most fundamental concepts that underlie much of

this dissertation. We will assume some familiarity with highest weights and how they correspond to

different irreducible representations (irreps) of a group.

For a slightly more thorough exposition of these concepts, see [16]. As well as the standard

references [17, 18] for a more general discussion.

1.1 Notation and basic tools

Recall that any highest weight µ, and therefore any irreducible representation, can be written in

terms of fundamental weights λi as

µ =
∑
i

niλi , (1.1)

where ni = 0, 1, 2, . . . . Hence, we may denote any irrep by a vector formed out of the different ni

[n1n2 · · ·nr] , (1.2)

where r is the rank of the group. These are the so-called Dynkin labels and they are a neat tool

when discussing representations as they simplify many calculations.

We can often very quickly compute tensor products by making use of the following straightforward

rules

(i) the dimensions on both sides of the equal sign have to match,

(ii) the tensor product of two representations [n1 · · ·nr] and [m1 · · ·mr] includes a term of the

form [n1 +m1, · · · , nr +mr],

(iii) the charge under the centre of the group is preserved.

For example, consider the irreps [10] and [01] of A2, then we clearly have

[10][01]︸ ︷︷ ︸
3×3

= [11]︸︷︷︸
8

+ [00]︸︷︷︸
1

, (1.3)

where we can always calculate the dimension of a representation using the Weyl dimension formula.
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1. Representation theory

For representations of SO(n), the relevant centres which are preserved are1

SO(2n+ 1) : Z2 , SO(0 mod 4) : Z2 × Z2 , SO(2 mod 4) : Z4 . (1.4)

There are two more operations that we are frequently interested in, they are the symmetric and

anti-symmetric products. The symmetric product is the subspace of the tensor product which

stays invariant under the exchange of two components. Similarly, the anti-symmetric product is the

subspace that acquires a minus sign under the exchange of two components. We can write a general

tensor product as

[n1 . . . nr][n1 . . . nr] = Sym2[n1 . . . nr] + Λ2[n1 . . . nr] . (1.5)

Lastly, we may construct a generating function for the symmetric and anti-symmetric products,

but we will postpone this discussion until section 2.2.

1.2 SO(n) representations

A useful way to think about irreducible representations is in terms of Dynkin diagram nodes. Since

the fundamental weights are defined to be dual to the roots, and the roots correspond to a node in the

Dynkin diagram, we can equally associate a fundamental weight with each node. This is illustrated

in figure 1.1. For Bn and Dn, some of the relevant irreps are called

• [0 . . . 0]: scalar representation

• [10 . . . 0]: vector representation

• [010 . . . 0]: adjoint representation

• [0 . . . 01]: spinor representation (for Bn)

• [0 . . . 10] and [0 . . . 01]: spinor representations (for Dn)

The supersymmetry algebra depends on the Lorentz spinors, whose properties vary in different

dimensions. In table 1.1 we summarise some of these properties. From the table, we can already

deduce that, to have a theory with 8 supercharges, we require that d ≤ 6. Additionally, if we are in

for example 4d, we will require two sets of supercharges, that is N = 2.

1These are technically the centres of the spin group, but at the level of representations, the statements above are
still valid.
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1.2. SO(n) representations

Bn:

--------
...01][10...01 Tolo...01 Toolo...01 to.......07 To...101

=>[10...0] = 13510...a =To...of =170...07

#...100]
Dn: =10.0

...10

----------

[10...01 Tolo...01 Toolo...01 to.......07
K=>[10...0] = 13510...a =>To...8) -

50...01]

Figure 1.1: Dynkin diagrams for Bn and Dn algebras with corresponding irreps labelled.

SO(1, d− 1) Spinor Type Spinor Dimension Supercharges R-Symmetry Rep.

2 (mod 8) Majorana Weyl 1 1 so(NL), so(NR)

3 (mod 8) Majorana 2 2 so(N )

4 (mod 8) Complex Weyl 2 4 u(N )

5 (mod 8) Symplectic Majorana 4 8 sp(N )

6 (mod 8) Symplectic Majorana Weyl 4 8 sp(NL), sp(NR)

7 (mod 8) Symplectic Majorana 8 16 sp(N )

8 (mod 8) Complex Weyl 8 16 u(N )

9 (mod 8) Majorana 16 16 so(N )

10 (mod 8) Majorana Weyl 16 16 so(NL), so(NR)

11 (mod 8) Majorana 32 32 so(N )

Table 1.1: Properties of Lorentz spinors in various dimensions. The spinor type and R-symmetry follow a

mod 8 relation. For even dimensions, the spinor dimension is 2
d
2−1 and for odd dimensions 2

d−1
2 . This can

be seen from the fact that the Dn algebra has two spinors and the Bn algebra only one. Also see [19].
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2. Algebraic geometry

As many of our studies are concerned with moduli spaces of vacua, we will need some machinery to

describe their geometries. The methods relevant for us fall under the study of algebraic geometry,

and as such, we will present them in the pseudo-formal manner that a theoretical physicist tends to

approach rigorous mathematics with.

Again, some of the standard references for algebraic geometry are [20, 21] and more specific

references will be made in the sections.

2.1 Hilbert series

An algebraic variety is, at its heart, a geometric object defined by polynomial equations.

Definition 1. An affine algebraic set is the set of solutions a1, . . . , am of a system of polynomial

equations f1, . . . , fn in C (or more generally some algebraically closed field K)

V(f1, . . . , fm) = {(a1, . . . , an) ∈ Cn : f1(ai) = · · · = fm(ai) = 0} . (2.1)

An affine variety is an affine algebraic set that is irreducible. That is, it is not the union of two

proper algebraic sets.

Every affine algebraic variety V has an associated algebraic object called its coordinate ring,

denoted C[V ]. To define it, we begin with the polynomial ring C[x1, . . . , xn]. This ring contains all

possible polynomials in the ambient space Cn. Then, consider the polynomials that vanish at every

point on V ⊆ Cn. This set is the ideal of the variety. Or more formally, we have

I(V) = {f ∈ C[x1, . . . , xn] : f(p) = 0 , ∀p ∈ V} . (2.2)

Using this, we can give the definition of the coordinate ring of a variety:

Definition 2. The coordinate ring of an affine variety C[V ] is defined to be

C[V ] = C[x1, . . . , xn]
I(V)

, (2.3)

i.e. two functions in C[x1, . . . , xn] are equivalent if their difference vanishes on V .
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2.1. Hilbert series

Every polynomial ring C[x1, . . . , xn] naturally can be graded by polynomial degree. In general,

we can write a graded ring as

R =
⊕
d≥0

Rd . (2.4)

With this in hand, we are ready to meet one of the most important tools that we have at our disposal.

Definition 3. The Hilbert series of a graded ring R is

HS(t) =
∞∑
d=0

dim(Rd)t
d . (2.5)

When the base field is C, the Hilbert series counts holomorphic functions on the variety. Since

the Hilbert series will be so ubiquitous throughout this work, we shall dedicate some time to its

properties.

The Hilbert series is a generating function encoding many geometric properties. In general, it

may be written in the form

HS(t) =
P (t)

Q(t)
, (2.6)

where P (t) is some polynomial with integer coefficients and Q(1) = 0. One of its most crucial

properties is:

Theorem 1. The dimension of an algebraic variety is equal to the order of the pole of its Hilbert

series at t=1.

A special set of varieties is called complete intersections. A variety of co-dimension c is a

complete intersection if there exist exactly c equations that define the variety. For example, S2

embedded in R3 has codimension 1 and is defined by a single equation x2 + y2 + z2 = 1. For a

complete intersection, the Hilbert series takes on a particularly nice form.

Theorem 2. If an algebraic variety is a complete intersection, the Hilbert series is of the form

HS(t) =

∏
j(1− tbj)rj∏
i(1− tai)gi

, (2.7)

where ai is the degree of the ith generator and gi is the number of generators at that degree. Similarly,

bj is the degree of the jth relation and rj is the number of relations at that degree.

Not all is lost when the variety fails to be a complete intersection. In this case, the denominator

can still be brought into this form, but the numerator fails to factorise in this particular manner.

This reflects the fact that, in addition to the relations between generators, we will now also have

relations between relations. These are known as syzygies.

If there is some global symmetry under which the polynomials are charged, we can include an

additional counting variable - or fugacity - in the Hilbert series to keep track of this. We call this

9



2. Algebraic geometry

the refined Hilbert series, and it is of the form

HS(t, x) =
∞∑
d=0

R(d)td , (2.8)

where Rd is the character of some representation, possibly reducible, of the symmetry group which

depends on the value of d. An interesting feature of this is that the t2 term in the Hilbert series is

always the character of the adjoint representation of the symmetry group (after a possible fugacity

mapping).

Closely related to the Hilbert series is the highest weight generating function [22], where instead

of keeping track of the whole character, we only keep the highest weight.

Definition 4. Consider a refined Hilbert series of the form

HS(t, xi) =
∞∑
d=0

[n1,d . . . nr,d]t
d . (2.9)

The highest weight generating function for this Hilbert series is

HS(t, xi) =
∞∑
d=0

µ
n1,d

1 . . . µ
nr,d
r td , (2.10)

where we have introduced the fugacities µ1, . . . , µr which are raised to the power of the highest

weight.

Consider, for example, the representation [10020] of SU(6) then the corresponding term in µ-

fugacities is µ1
1µ

2
4. Lastly, we would be remiss if we did not mention the following neat fact about

the Hilbert series of Calabi-Yau varieties.

Theorem 3. An affine algebraic variety is Calabi-Yau if and only if the numerator of the rational

form of the Hilbert series is palindromic.

Example 1. Starting with a simple example, consider the space C2 with coordinate ring C[z1, z2].
We can now make a table counting the monomials at different orders. Monomials can very much

be seen as the functional equivalent of vector basis elements.

10



2.2. Plethystics

Degree Monomials Number

0 1 1

1 z1, z2 2

2 z21 , z1z2, z
2
2 3

. . .

n zn1 , z
n−1
1 z2, . . . , z

n
2 n+ 1

. . .

Thus, the Hilbert series is

HS(t) =
∞∑
n=0

(n+ 1)tn =
1

(1− t)2
. (2.11)

Since there are no relations between the generators, we also say that the space is freely generated.

But we can do more. Suppose we sum over the generators (tracked by fugacities), then

∑
m,n

tn1 t
m
2 =

1

(1− t1)(1− t2)
. (2.12)

This is essentially a refined Hilbert series. Making the remappinga t1 7→ tx and t2 7→ t/x, we

obtain

HS(t, x) =
1

(1− tx)(1− t/x)
= 1 + (x+

1

x
)t+ (x2 + 1 +

1

x2
)t2 + · · ·

= 1 + [1]t+ [2]t+ · · · ,
(2.13)

where we have recognised the characters as belonging to SU(2).

aThe map is determined by the charges of each generator under the global symmetry; here the charges are +1
and −1 under SU(2).

2.2 Plethystics

Let us now return to a point of discussion from section 1.1. We want to construct a function that

produces symmetric products of functions. We will not go through all the details, but instead just

outline the construction. The tools in this section were introduced in [23, 24], and for a review see

[16].

Suppose we want to generate all possible symmetric rank-k tensors ai1...ik consisting of rank-1

tensors xi where i = 1, . . . , n for all k = 0, 1, 2, . . . . One can verify that the following function does

exactly that
n∏
i=1

1

1− xi
= 1 +

∑
i

xi +
∑
i≤j

xixj + · · · . (2.14)

11



2. Algebraic geometry

This can be manipulated into the form

n∏
i=1

1

1− xi
= exp

(
∞∑
k=1

f(xki )

k

)
, (2.15)

where f(xki ) =
∑

i x
k
i . Using this, we can define a function which generates symmetric products of

some function f(xi).

Definition 5. The plethystic exponential of some function f(x1, . . . , xn), where f(0, . . . , 0) = 0,

is

PE[f(x1, . . . , xn)] = exp

(
∞∑
k=1

f(xk1, . . . , x
k
n)

k

)
. (2.16)

In particular, if we include an additional fugacity t in the argument of the plethystic exponential,

we get

PE[f(xi)t] =
∞∑
k=0

Symk[f ]tk . (2.17)

There are some useful identities which are not terribly difficult to prove

PE[f + g] = PE[f ]PE[g] (2.18)

and

PE

[∑
i

git
ai −

∑
j

rjt
bj

]
=

∏
j(1− tbj)rj∏
i(1− tai)gi

. (2.19)

The latter should remind one of the expression for the Hilbert series of a complete intersection. The

interpretation is hence straightforward, if we have gi generators at degree ai and rj relations between

generators at degree bj, the Hilbert series of that variety is given by the left-hand side of (2.19).

In addition to the plethystic exponential, as the name suggests, there also exists an inverse

operation.

Definition 6. The plethystic logarithm is defined to be the inverse of the plethystic exponential,

and it takes the form

PL[f(x1, . . . , xn)] =
∞∑
k=1

µ(k)

k
log
(
f(xk1, . . . , x

k
n)
)
, (2.20)

where µ(k) is the Möbius function.

Similar to the identities for the plethystic exponential, for the plethystic logarithm, we have

PL[fg] = PL[f ] + PL[g] (2.21)

and

PL

[∏
j(1− tbj)rj∏
i(1− tai)gi

]
=
∑
i

git
ai −

∑
j

rjt
bj . (2.22)
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2.3. Symplectic singularities

Thus, we may use the PL as a method to extract information about the generators and relations of

a variety from its Hilbert series. If the PL turns out to have an infinite number of terms, then we do

not have a complete intersection, and we have syzygies.

Example 2. Let us explicitly construct the variety C2/Zn, where Zn acts on the coordinates

(z1, z2) ∈ C2 as

(z1, z2) ∼ (e2πi/nz1, e
−2πi/nz2) . (2.23)

We can easily see that the space of Zn invariant monomials is generated by

a = zn1 , b = zn2 and c = z1z2 , (2.24)

where a and b are at degree n and c is at degree 2. They are related via a relation at degree 2n

ab = cn . (2.25)

Additionally, C2/Zn has a global SU(2) symmetry under which the generators a and b form a

doublet and c a singlet.

Keeping track of all this information, we can now construct the Hilbert series of the variety

using the plethystic exponential

HS(t, x) = PE
(
[0]t2 + [1]tn − t2n

)
=

1− t2n

(1− tnx)(1− t2)(1− tn/x)
,

(2.26)

where the Dynkin labels denote the usual SU(2) irreps, [n] = xn+ xn−2 + · · ·+ x−n. In the next

chapter, we will see that this turns out to be the Hilbert series for the Coulomb branch of SQED

with n flavours.

2.3 Symplectic singularities

This section may be omitted until chapter 6, and will not be necessary before. Yet, due to its nature,

it is much more fitting here.

Symplectic singularities are at the very centre of everything we study. Most moduli spaces we

will encounter are symplectic singularities, or unions thereof. For theories with 8 supercharges, these

include the Higgs branch in dimensions 3 to 6 and the 3-dimensional Coulomb branch.

For a brilliant introductory lecture, which we will broadly follow here, see [25]. Additionally, see

[26, 27].

Definition 7. A symplectic manifold is a pair (M,ω), where M is a manifold and ω ∈ Ω2(M) is

a non-degenerate closed 2-form. That is

13



2. Algebraic geometry

(i) dω = 0,

(ii) For X, Y ∈ X(M), if ω(X, Y ) = 0 for all Y , then X = 0.

Definition 8 (Beauville [28]). A normal variety X is said to have a symplectic singularity if:

(i) the smooth part Xreg of X is a symplectic manifold,

(ii) for any resolution π : Y → X, where Y is a smooth variety, the pullback π∗ω is closed but

possibly degenerate.

In general, we will refer to the whole variety X as the symplectic singularity, which is technically

not correct, but makes talking about it much easier.

Theorem 4 (Kaledin [29]). If we have a symplectic singularity X, then we can decompose this space

into a disjoint union of open and smooth symplectic varieties, called symplectic leaves Li, that is

X =
⊔
i

Li . (2.27)

Furthermore, the exists a stratification between the leaves given by a partial ordering

Li < Lj if Li ⊂ Lj , (2.28)

where Lj is the closure of Lj.

Theorem 5 (Kaledin [29]). Locally, around some point p ∈ Li the space looks like

Xlocally = Li × Ti , (2.29)

where Ti is another symplectic singularity, called the transverse slice. We sketch this in figure 2.1.

#
Figure 2.1: Local picture for a point p ∈ Li.

Another thing we can do, which will become relevant again later on, is to consider a transverse

slice not within all of X but rather a subspace given by the closure of a symplectic leaf Lj. This

transverse slice is given by

T j
i = Ti ∩ Lj . (2.30)
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2.4. Nilpotent orbits and their closures

Example 3. Suppose we have a symplectic singularity X, where we have two singular loci, a 0d

and 1d locus, one living within the other (left-hand side of figure 2.2). Then we can decompose

this space as is shown in figure 2.2. And clearly we have the stratification L0 < L1 < L2 = Xreg.

- ↳ ↳ *

2, Zo

X 22=Xreg
Figure 2.2: Decomposition of symplectic singularity.

2.4 Nilpotent orbits and their closures

This discussion broadly follows [30]; a more formal introduction to nilpotent orbits can be found in

[31].

A large subclass of symplectic singularities are closures of nilpotent orbits. This is due to an

important theorem by Namikawa [32]:

Theorem 6 (Namikawa). A symplectic singularity is the closure of a nilpotent orbit of algebra g(C),
where g(C) is the algebra of the global symmetry of the variety, if all of its generators are of spin 1

only under SU(2)R.

We can illustrate this with two examples. Consider first the space C2, the generators are z1 and

z2, which belong to the multiplets (z1, z̄2) and (z2, z̄1) both in the [1] representation under SU(2)R.

And, as such, they have spin 1/2, meaning that C2 is not a closure of a nilpotent orbit.

Next, consider the space C2/Z2. We now have the generators z21 , z
2
2 , and z1z2. The first two

live in multiplets Sym2[1] = [2], and the last one in the [2] irrep of the product [1][1] = [2] + [0].

Therefore, all the generators do have spin 1, and C2/Z2 is isomorphic to the closure of a nilpotent

orbit. In this case, the closure of the nilpotent orbits can be written as C2/Z2 = min.A1.

The algebra of type An

Definition 9. Let X be an element of a complex semisimple Lie algebra g. X is nilpotent if

(adX)m = 0 , (2.31)

where m > 0 and ad : g → End(g) is the adjoing representation.
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2. Algebraic geometry

To construct nilpotent orbits, we will make use of a classification theorem.

Theorem 7 (Type An). Nilpotent orbits in sl(n) are in one-to-one correspondence with the set of

partitions P(n) of n.

A partition of n is an ordered set of numbers (λ1, . . . , λr) such that
∑

i λi = n, λ1 ≥ · · · ≥ λr,

and λi ∈ N. For example, the set of partitions of 4 would be

P(4) = {(4), (3, 1), (22), (2, 12), (14)} , (2.32)

where we use the superscript to denote multiples of a number, e.g. (12) = (1, 1).

We will also need to define the elementary Jordan block Ji, which is an i × i matrix of the

form

Ji =



0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1

0 0 0 · · · 0 0


. (2.33)

A nilpotent endomorphism of Cn can be built from a partition λ = (λ1, . . . , λr) and elementary

Jordan blocks as

Xλ =


Jλ1 0 · · · 0

0 Jλ2 · · · 0
...

...
. . .

...

0 0 · · · Jλr

 . (2.34)

Xλ is a nilpotent element of sl(n,C), and its nilpotent orbit is defined as

Oλ = PSL(n) ·Xλ . (2.35)

Two different partitions correspond to two disjoint orbits, that is, for λ, λ′ ∈ P(n)

Oλ ∩ Oλ′ = ∅ ⇐⇒ λ ̸= λ′ . (2.36)

A note on the nomenclature of nilpotent orbits. Starting from the bottom, the orbits are called:

trivial, minimal, next-to-minimal, next-to-next-to-minimal, etc.. Conversely, starting from the top:

regular, sub-regular, sub-sub-regular, etc.. And we write them as

min.An , n.min.An , . . . and reg.An , s.reg.An , . . . . (2.37)
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2.4. Nilpotent orbits and their closures

Example 4. Consider the case of sl(2,C). The set of partitions is P(2) = {(2), (12)}. For the

trivial partition (12), we have the Jordan normal matrix

X(12) =

0 0

0 0

 . (2.38)

And the orbit corresponding to this element is trivially

O(12) =

{
M = S ·

0 0

0 0

 · S−1 : S ∈ SL(2,C)
}

=

{0 0

0 0

} .
(2.39)

Since the centre of SL(2,C) is Z2, in the operation in the first line of (2.39), it does not matter

whether S ∈ SL(2,C) or S ∈ PSL(2,C), as they will both give the same element.

The second orbit turns out to be more interesting. For the parition (2), we have the Jordan

normal matrix

X(2) =

0 1

0 0

 . (2.40)

And, therefore, the orbit becomes

O(2) =

{
M = S ·X(2) · S−1 : S ∈ SL(2,C)

}

=

{−ac a2

−c2 ac

} . (2.41)

One can explicitly check that M2 = 0. Crucially, O(2) is disjoint from O(12) as the condition

ad− bc = 1 would be violated otherwise. The closure of O(2) is given by

O(2) = O(2) ∪ O(12) . (2.42)

The set O(2) is now an algebraic variety with three generators a2, c2, and ac. This we recognise

as the Kleinian surface singularity C2/Z2. The orbit just above the trivial orbit is called the

minimal orbit, thus in our notation from earlier: C2/Z2 = min.A1.
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2. Algebraic geometry

The other classical algebras of type Bn, Cn, and Dn

We will not construct the nilpotent orbits for the other algebras explicitly, but they follow the same

pattern, with the exception that we have additional rules for the partitions. These are characterised

in the following theorems (see [31] for more detail):

Theorem 8 (Type Bn). Nilpotent orbits in so(2n+ 1,C) are in one-to-one correspondence with the

set of partitions of 2n+ 1 in which even parts occur with even multiplicity.

For example, in so(7,C) there are 7 nilpotent orbits:

O(7),O(5,12),O(3,14),O(3,22),O(32,1),O(22,13),O(17) . (2.43)

Theorem 9 (Type Cn). Nilpotent orbits in sp(2n,C) are in one-to-one correspondence with the set

of partitions of 2n in which odd parts occur with even multiplicity.

For example, in sp(6,C) there are 8 nilpotent orbits:

O(6),O(4,2),O(4,12),O(32),O(23),O(22,12),O(2,14),O(16) . (2.44)

Theorem 10 (Type Dn). Nilpotent orbits in so(2n,C) are in one-to-one correspondence with the set

of partitions of 2n in which even parts occur with even multiplicity, except that partitions consisting

only of even parts with even multiplicities correspond to two orbits denoted OI and OII .

For example, in so(8,C) there are 12 nilpotent orbits:

O(7,1),O(5,3),OI
(42),OII

(42),O(5,13),O(32,12),O(3,22,1),OI
(24),OII

(24),O(3,15),O(22,14),O(18) . (2.45)
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3. Supersymmetric gauge theories

We are now ready to tackle the main character of this dissertation: supersymmetric gauge theories,

particularly quiver gauge theories with 8 supercharges. These theories have proven to be a particu-

larly fertile area of research, yielding significant insights into quantum field theory, non-perturbative

effects, and geometric structures.

It is assumed that the reader has some prior exposure to supersymmetry; otherwise, some classics

to brush up on are [33, 34].

3.1 Supermultiplets in 3d, 4d and 5d

The massless particles in a theory can be classified by their representations under the (super)Poincaré

algebra. This is obtained in the usual way using Wigner’s little group construction. One of the major

benefits of supersymmetry is that all particles fall into so-called supermultiplets, which heavily

restrict the number and type of allowed particles.

We will use the constraints of supersymmetry to construct the relevant multiplets here; for a

more bottom-up and traditional approach, a great explanation can be found in [33].

If we have n supercharges, then the minimal number of degrees of freedom that a multiplet can

have, with this amount of supersymmetry, is 2n/4. And, as we will be interested in theories with 8

supercharges, the minimal number of degrees of freedom is four. We will refer to the multiplet with

this number of degrees of freedom as the half-hypermultiplet. Its specific form depends on the

little and R-symmetry group.

5d N = 1

The little group is SO(3) and the R-symmetry is Sp(1). Since we will have to split four degrees of

freedom evenly across bosonic and fermionic states, the only possibility is

h = 2[0] + [1]

= [0][1]R + [1][0]R ,
(3.1)

where we omit the label for the representation under the little group, and the representation under

the R-symmetry is labelled by a subscript R. From the half-hypermultiplet, we can construct further
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3. Supersymmetric gauge theories

multiplets with the same amount of supersymmetry. One of them is the hypermultiplet,

H5 = 2h = 4[0] + 2[1]

= 2[0][1]R︸ ︷︷ ︸
φ1,2

+2[1][0]R︸ ︷︷ ︸
ψ1,2

, (3.2)

where we have two complex scalars φ1,2 and two spinors ψ1,2. The vector multiplet is

V5 = h[1] = [2] + 2[1] + [0]

= [2][0]R︸ ︷︷ ︸
Aµ

+ [0][0]R︸ ︷︷ ︸
ϕ

+ [1][1]R︸ ︷︷ ︸
ψ1,2

, (3.3)

where we have one gauge boson Aµ, one real scalar ϕ and two spinors ψ1,2.

4d N = 2

The reason we started with analysing the 5-dimensional case is that we now merely need to dimen-

sionally reduce the already existing multiplets. In 4 dimensions, the little group is SO(2) ≃ U(1)

and as such irreps are simply labelled by their charge under U(1), we will use the fugacity q to keep

track of this. The R-symmetry is U(2) ≃ U(1)× SU(2). The hypermultiplet becomes

H4 = 4q0 + 2(q1 + q−1)

= 2q0 × [1]0R︸ ︷︷ ︸
φ1,2

+(q1 + q−1)× ([0]+1
R + [0]−1

R )︸ ︷︷ ︸
ψ1,2

, (3.4)

where attached the U(1) R-symmetry charge to the Dynkin label. The particle content stays the

same as before. The vector multiplet, on the other hand, becomes

V4 = (q2 + q−2) + 2q0 + 2(q1 + q−1)

= (q2 + q−2)× [0]0R︸ ︷︷ ︸
Aµ

+ q0 × ([0]+2
R + [0]−2

R )︸ ︷︷ ︸
φ

+ q1 × [1]+1
R + q−1 × [1]−1

R︸ ︷︷ ︸
ψ1,2

, (3.5)

where the real scalar in 5 dimensions has turned into a complex scalar in 4 dimensions.

3d N = 4

In three dimensions, the little group is trivial, and we can only use the SO(4)R ≃ SU(2)C × SU(2)H

R-symmetry to label states. The hypermultiplet consists of two complex scalars which form a doublet

under SU(2)H, i.e.

H3 = 2[1]H[0]C︸ ︷︷ ︸
φ1,2

+ fermions . (3.6)
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3.2. Quivers

When we reduce the gauge field in the 4d vector multiplet, we get a vector as well as an additional

scalar. The gauge field now has one degree of freedom, and we can dualise the gauge field A to an

S1-valued scalar α via ∗dA = dα, where α is called the dual photon. This has another implication,

because the quantity J = dα is conserved, Noether’s theorem implies that we have U(1)J symmetry.

This symmetry is not seen by the Lagrangian, and so we refer to it as a hidden or topological

symmetry. The vector multiplet can be written as

V3 = [0]H[0]C︸ ︷︷ ︸
Aµ

+ [0]H[2]C︸ ︷︷ ︸
ϕ1,2,3

+ fermions . (3.7)

One final point to note is that the multiplets with 8 supercharges can be expressed in terms of

multiplets with 4 supercharges. For example, the vector multiplet splits into a vector multiplet and

a chiral multiplet, and the hypermultiplet splits into a chiral and anti-chiral multiplet.

3.2 Quivers

Rather than writing down the Lagrangian of a theory, we can encode all the relevant information in a

quiver diagram, initially introduced in [5]. There are different ways of drawing a quiver for different

numbers of supercharges. In theories with 8 supercharges, we have vector and hypermultiplets that

can transform in various ways under gauge and global symmetries. All this information can be

written in the following way:

• A vector multiplet transforming in the adjoint representation of a gauge group G is denoted

by a circular node

G

• A hypermultiplet in the bifundamental representation of two groups G and G′ is drawn as a

line between two nodes

G G′

If instead the hypermultiplet transforms under some flavour symmetry F , we can draw a

square node to mark that no vector multiplet is associated with this group

G F

If we are instead in a theory with 4 supercharges, such as 4d N = 1 or 3d N = 2, we have chiral

and vector multiplets. They are represented by:
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3. Supersymmetric gauge theories

• For a vector multiplet transforming in the adjoint representation, we again have a circular

node

G

• For a chiral multiplet transforming in the fundamental representation ofG and anti-fundamental

representation of G′, we draw an arrow between the two nodes

G G′

Similarly to before, if we have some flavour symmetry F , we can simply replace the circular

gauge node with a square flavour node.

Example 5. Suppose we have a theory with gauge group U(1) and flavour symmetry SU(n).

This theory is also called SQED with n flavours. If we have 8 supercharges, we can write this

as

U(1)

SU(n)

Alternatively, since the 8 supercharge multiplets decompose into 4 supercharge multiplets, we

can express the same theory as

U(1)

SU(n)

3.3 Moduli spaces - an overview

A moduli space of vacuum expectation values (vevs) is the space of values that the scalar fields can

take on such that the potential is minimised. In the standard model, the Higgs boson’s moduli space

is a simple circle S1. Much of the fascination with supersymmetric theories comes from the fact that

their moduli spaces have an incredibly rich geometric structure. These spaces can be viewed as affine

algebraic varieties, which is of course the whole reason we bothered introducing them in chapter 2.
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3.4. Higgs branch

For theories with 8 supercharges, we have scalars in both the vector and hypermultiplet. The

moduli space now splits into different branches. The Higgs branch is parameterised by the vevs

in the hypermultiplet, with the vevs in the vector multiplet being set to zero. The Coulomb

branch, on the other hand, is parameterised by vevs in the vector multiplet, with the vevs in the

hypermultiplet turned off. More compactly, if q are the scalars in the hypermultiplet and ϕ are the

scalars in the vector multiplet, we have, on a generic point

H : ⟨q⟩ ≠ 0 and ⟨ϕ⟩ = 0

C : ⟨q⟩ = 0 and ⟨ϕ⟩ ≠ 0 .
(3.8)

We can turn on different vevs from both multiplets; in this case, we are on a mixed branch.

For theories in dimensions 3, 4, and 5, the Higgs branch is a symplectic singularity, or hyperKähler

variety, whereas the same is only true for the Coulomb branch in 3 dimensions.

3.4 Higgs branch

Let us now explore these different branches in more detail, as well as consider concrete examples to

explain some of the main computational methods at our disposal. Beginning with the Higgs branch.

Definition 10. The classical Higgs branch is defined as

Hclassical = Hn///G =
{(q, q̄) : F- and D-terms}

G
, (3.9)

where (q, q̄) are the scalars in the hypermultiplets, n is the number of hypermultiplets, and G is the

gauge group. This is a hyperKähler quotient, denoted by ///.

As it turns out, imposing D-terms and quotienting over the gauge group is equivalent to simply

quotienting over the complexified gauge group. Another simple consequence of the definition is that

the dimension of the Higgs branch is

dimH(H) = nhypers − nvectors , (3.10)

where nhypers is the number of hypermultiplets and nvectors is the number of vector multiplets, which

is the same as the dimension of the gauge group G.

Let us consider now SQED with n flavours in 3d N = 4. In the 4 supercharge notation, we have

the following quiver
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3. Supersymmetric gauge theories

U(1)

SU(n)

Q̄j Qi

Φ

The corresponding fields and their transformations are

U(1) SU(n)

Qi -1 [10 . . . 0]

Q̄j 1 [0 . . . 01]

Φ 0 [0 . . . 0]

where Qi is an n× 1 matrix, Q̄j is a 1× n matrix and Φ is a 1× 1 matrix. We will denote the scalar

fields in these chiral multiplets as qi, q̄j, and ϕ, respectively. The dimension of the Higgs branch will

be

dimH(H) = n− 1 . (3.11)

To explicitly construct the Higgs branch, we need to solve the F-terms. To this end, the super-

potential can be read off the quiver by going around the loop

W = Tr(Q̄ΦQ) , (3.12)

and thus the scalar potential, given by the F-terms, is

V (qi, q̄j) =
∂W(q, q̄, ϕ)

∂ϕ
= qiq̄i , (3.13)

where we exchanged the chiral multiplets for their scalar fields. We then find that the restriction on

the scalars is that qiq̄i = 0.

A gauge invariant combination of our operators qi and q̄j would be M i
j = qiq̄j, which is an n×n

matrix with rank(M) ≤ 1. The latter follows from

rank(M) ≤ min{rank(q), rank(q̄)} = 1 . (3.14)

Imposing our vacuum condition on this operator, we can see that

M2 =M i
jM

j
k = qiq̄jq

j q̄k = 0 and Tr(M) = qiq̄i = 0 . (3.15)
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3.4. Higgs branch

We therefore have that the Higgs branch is

H
(

1

n )
= {M ∈ SU(n,C) : rank(M) ≤ 1,Tr(M) = 0,M2 = 0}

= min.An−1 .

(3.16)

This we recognise as the closure of the minimal nilpotent orbit of An−1. In the case of 3-dimensional

theories, the Higgs branch receives no quantum corrections and stays classical

Hquantum = Hclassical . (3.17)

If we are simply interested in the Hilbert series, we do not need to explicitly construct the variety

as we did above. Recall that the Hilbert series counts gauge-invariant quantities at different orders.

To get all the contributions from the generators and relations, we compute the plethystic exponential.

This will not be gauge-invariant, as such we need to get rid of all the gauge-variant contributions.

For more details, see [35]. To this end, we introduce:

Definition 11. The Molien-Weyl formula projects representations of a group G onto the trivial

representation, and as such, every non-invariant contribution cancels, leaving only the gauge invariant

part. In general, it takes the form ∫
G

dµG PE

[
χRG(za)t

]
, (3.18)

where χRG is the character of the representation R and the measure is the Haar measure given by∫
G

dµG =
1

(2πi)r

∮
|z1|=1

· · ·
∮
|zr|=1

dz1
z1

· · · dzr
zr

∏
α+

(
1−

r∏
l=1

z
α+
l

l

)
, (3.19)

where α+ are the positive roots and r is the rank.

Some common examples of the Haar measure are∫
SU(2)

dµSU(2) =
1

2πi

∮
|z|=1

dz

z
(1− z2) ,∫

SU(3)

dµSU(3) =
1

(2πi)2

∮
|z1|=1

∮
|z2|=1

dz1
z1

dz2
z2

(1− z1z2)

(
1− z21

z2

)(
1− z22

z1

)
.

(3.20)

Example 6. Let us take a specific example, the Higgs branch of U(1) with two flavours. To

compute the Hilbert series, we include the number and fugacity under the gauge group of qi and
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3. Supersymmetric gauge theories

q̄i as well as a term for their relation at second order

HS(t) =
1

2πi

∮
|z|=1

dz

z
PE
[
2z−1t+ 2z1t− t2

]
=

1

2πi

∮
|z|=1

dz

z

(1− t2)

(1− zt)2(1− t/z)2
.

(3.21)

Because |t| < 1, the only pole inside the circle |z| = 1 is the second-order pole at z = t. After a

simple application of the Residue theorem, one finds that

HS(t) =
1− t4

(1− t2)3
. (3.22)

This matches the Hilbert series of the space C2/Z2.

Example 7. Consider the following quiver:

1

1

1

1

We associate each gauge group with a fugacity a and b, respectively. The bifundamental repres-

entations of the chiral multiplets can then be written as

(a+
1

a
) , (b+

1

b
) , and (

a

b
+
b

a
) . (3.23)

For each gauge node, we also have a chiral multiplet transforming trivially and imposing a

constraint. Thus, the Hilbert series is

HS(t) =
1

(2πi)2

∮
|a|=1

∮
|b|=1

da

a

db

b
PE

[
(a+

1

a
)t+ (b+

1

b
)t+ (

a

b
+
b

a
)t− 2t2

]
=

1− t6

(1− t3)2(1− t2)
,

(3.24)

which corresponds to the variety C2/Z3.

3.5 Coulomb branch

The Coulomb branch is parameterised by the scalars in the vector multiplet, which transform in the

adjoint representation of the gauge group.
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3.5. Coulomb branch

Definition 12. The Coulomb branch is defined as

C = {ϕi : V (ϕi) = 0} , (3.25)

where the potential for the scalars in the vector multiplet takes the form

V ∼
∑
i<j

Tr[ϕi, ϕj]
2 . (3.26)

To minimise this potential, the scalars ϕi take values in the Cartan subalgebra h of the gauge

group such that V (ϕi) = 0. On a generic point, the gauge group G breaks to its maximal torus

U(1)r, where r is the rank.

In the case of 3d N = 4 theories, we have three real scalars and an S1-valued scalar (the dual

photon). Classically, the Coulomb branch is thus

Cclassical =
(R3 × S1)r

WG

, (3.27)

where r is again the rank and WG is the Weyl group. The dimension of this space is

dimH(C) = rank(G) , (3.28)

where G is the gauge group. The Coulomb branch receives quantum corrections that change many

of its properties, but its dimension will be preserved.

The Coulomb branch as a space of dressed monopole operators

The 3-dimensional case is special, as we can define a conserved current J (1) = ∗3F (2), where F is

the field strength of the gauge field A. The equations of motion and the Bianchi identity can be

reexpressed in terms of this current

dF (2) = 0 d ∗3 F (2) = 0

d ∗3 J (1) = 0 dJ (1) = 0 ,
(3.29)

where the bottom-right equation indicates that the current is conserved and we have some U(1)J

topological symmetry.

If we now source the Bianchi identiy for F , we get the existence of some monopole operator Vm(x)

d ∗3 J (1) = dF (2) = mδ(3) . (3.30)

For a vector multiplet with 4 supercharges, consisting of a gauge field A and a real scalar field σ
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3. Supersymmetric gauge theories

together with fermions, the singular boundary conditions become

A± ∼ m

2
(±1− cos θ)dφ

σ ∼ m

2r
,

(3.31)

as r → 0 in spherical coordinates (r, θ, φ). The magnetic charge m lives in the coweight lattice Λ̂ of

the gauge group G.

As we are dealing with a theory with 8 supercharges, and so far we have neglected the two

remaining scalars (or one complex scalar), which are in the chiral multiplet in the decomposition

of the 8 supercharges vector multiplet. This complex scalar Φ can be used to dress the monopole

operator by multiplication of a gauge-invariant polynomial of Φ

Om,P = Vm × Pm(Φ) . (3.32)

All together, we get a so-called bare monopole operator Vm from the vector multiplet with 4

supercharges, and dressing factors from the chiral multiplet with 4 supercharges, thus forming a

space of dressed monopole operators for the full vector multiplet with 8 supercharges.

Next, we want a way to count the dressed monopole operators graded under the R-symmetry

and the global symmetry of the Coulomb branch. This method goes under the name of monopole

formula and was first developed in [4].

Theorem 11. The monopole formula gives us the Hilbert series for a space of dressed monopole

operators. It is given by

HS(t, z) =
∑

m∈Λ̂/W

(∏
i

z
Ji(m)
i

)
PG(t,m) t2∆(m) , (3.33)

where m are the magnetic charges in the coweight lattice Λ̂ quotiented by the Weyl group W of the

gauge group G, zi are the fugacities counting the topological charges under U(1)J , PH(t,m) is the

dressing factor, and t is the fugacity counting the R-charge / conformal dimension.

Let us unpack this in some more detail. We should be very familiar with the weight lattice Λ

of a Lie algebra from any course on representation theory. This lattice is also sometimes called the

weight lattice of electric charges. To get elements in the dominant chamber only, one quotients by

the Weyl group W . Then, since we are counting magnetic elements, we need to sum over the dual

weight lattice Λ̂. Again, we quotient by the corresponding Weyl group to restrict to charges in the

dominant chamber only.
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3.5. Coulomb branch

The fugacity t counts the R-charge r(m) of the bare monopole operators and is given by

r(m) =
1

2

Nf∑
i=1

∑
ρ∈Ri

|ρ(m)|︸ ︷︷ ︸
hplet contribution

−
∑
α∈Φ+

|α(m)|︸ ︷︷ ︸
vplet contribution

(3.34)

where NF are the number of flavours, ρ are the weights of the representation Ri, and α are the

positive roots of the Lie algebra of the gauge group. There are three types of theories, see [19, 36]:

(i) If r(m) > 1/2 for any m ̸= 0, then the theory is called good. The Coulomb branch will be a

cone, at the tip of which the theory flows to an interacting SCFT in the IR. In the UV, the

R-charge matches the conformal dimension r(m) = ∆(m).

(ii) If r(m) ≥ 1/2 with some m saturating the bound, the theory is called ugly. The Coulomb

branch will be a cone times Hn for some n ∈ N. At the tip of the cone, the theory flows

to an interacting SCFT as well as a free part. The conformal dimension again matches the

R-charge.

(iii) If r(m) < 1/2 for some m ̸= 0, the theory is called bad. In this case, the Coulomb branch is

some more complicated space, the conformal dimension is not equal to the R-charge, and the

Hilbert series diverges.

Since t is only counting the bare monopole operators, we still need to account for the dressing.

This is done via the dressing factor

PG(t,m) =
r∏
i=1

1

1− t2di(m)
, (3.35)

where di is the degree of the independent Casimir operators.

The fugacities zi count the topological charges under the U(1)J symmetries, and after a fugacity

mapping, will give us the characters of the global symmetry of the Coulomb branch. The fugacity

mapping is given Cartan matrix of the global symmetry. We can get the unrefined Hilbert series in

the normal way by simply setting zi = 1.

Crucially, even though we may seem to limit ourselves to the very specific case of 3d N = 4, it

turns out that there is a very powerful conjecture which underlies much of what is to follow.

Conjecture 1. For a cone of the Higgs branch H - in any of the dimensions 3, 4, 5, 6 - of some

theory (called the electric quiver), there exists a theory in 3 dimensions (magnetic quiver)

whose Coulomb branch is equal to the cone of the Higgs branch. That is:

Hd=3,4,5,6(electric quiver) =
⋃
i

Cd=3(ith magnetic quiver) . (3.36)
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3. Supersymmetric gauge theories

Example 8. Let us compute the Hilbert series for the Coulomb branch of U(1) with n flavours.

The R-charge is

∆(m) =
n

2
|m| , (3.37)

where m is the magnetic charge of U(1), which lives in the magnetic lattice Z. The dressing

factor takes the form

P (t) =
1

1− t2
. (3.38)

And thus, the Hilbert series becomes

HS(t, z) =
1

1− t2

∑
m∈Z

zmtn|m|

=
1− t2n

(1− ztn)(1− t2)(1− tn/z)
.

(3.39)

One may immediately recognise this from our discussion in section 2.2 as C2/Zn. Hence, we see
that by quantising our moduli space changes drastically:

Cclassical = R3 × S1︸ ︷︷ ︸
smooth

→ Cquantum = C2/Zn︸ ︷︷ ︸
singular

. (3.40)

Example 9. Let us now look at another quiver and compute its Coulomb branch Hilbert series:

1

1

1

1

We will give the two gauge nodes magnetic charges a and b, respectively. Thus, the R-charge is

given by

∆(a, b) =
1

2
(|a|+ |a− b|+ |b|)− 0 , (3.41)

and we will have a dressing factor for each U(1) gauge group. The Hilbert series then becomes,

again via the monopole formula,

HS(t) =
1

(1− t2)2

∑
a,b∈Z

t|a|+|a−b|+|b|

=
1 + 4t2 + t4

(1− t2)4

= 1 + 8t2 + 27t4 +O(t6) .

(3.42)
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3.6. Field theory in 5d theories

And if one computes the refined Hilbert series

HS(t, x1, x2) = 1 + [1, 1]t2 + [2, 2]t4 +O(t6) , (3.43)

where after a mapping one recognises the SU(3) characters. The dimension of this space is 4,

due to the order of the pole at t = 1. This matches the dimension of min.A2.

3.6 Field theory in 5d theories

As we will primarily focus on 5-dimensional theories in the latter parts of this dissertation, we should

spend some time investigating their field-theoretic properties.

Consider some arbitrary non-abelian gauge theory, its action in 5 dimensions

S =
1

g2

∫
d5xTr

(
− FµνF

µν + · · ·
)
, (3.44)

where g is the gauge coupling, and F is the field strength of the gauge field Aµ. Crucially, we can

show that the mass dimension of g is [g] = −1/2. This means that - naively - the theory is non-

renormalisable and thus solely a low-energy effective field theory. But, as Seiberg found in [12], there

exist non-trivial fixed points in the UV where the theory flows to some superconformal field theory

(SCFT).

The key to this picture is understanding the non-perturbative effects of instanton states. Instan-

tons have a mass that is inversely proportional to the gauge coupling,

mI ∝
1

g2
. (3.45)

As we move towards strongly coupled regimes, the instantons become massless and will contribute

to the Higgs branch of the theory. And because they are charged under a topological symmetry

J (1) = ∗Tr(F ∧ F ) , (3.46)

they will enhance the global symmetry. This enhancement is not always possible, i.e. for some

5d N = 1 theory, there does not necessarily exist a fixed point. Later, when discussing the brane

picture, we will see that certain arrangements of branes can prevent us from reaching a fixed point.

Prepotential

The exact form of the low-energy effective action of our theory is determined by the prepotential.

See [37] for a review. Intriligator, Morrison, and Seiberg (IMS) proposed a one-loop exact prepotential

in [13]. More recently, there have been successful efforts to construct a complete prepotential

capturing non-perturbative effects and global symmetries over the whole parameter region [38].
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3. Supersymmetric gauge theories

As we have seen, the Coulomb branch is parameterised by a single scalar ϕ ∈ R. On a generic

point on the Coulomb branch, the gauge group breaks to its maximal torus U(1)r ⊂ G. For this

low-energy Abelian theory, the IMS prepotential is

F(ϕ) =
1

2
m0hijϕiϕj +

κ

6
dijkϕiϕjϕk +

1

12

( ∑
α∈roots

|α · ϕ|3 −
∑
f

∑
ω∈Rf

|ω · ϕ+mf |3
)
, (3.47)

where m0 = 1/g20, κ is the classical Chern-Simons level, hij = Tr(TiTj), and dijk = 1
2
Tr(Ti{Tj, Tk})

with Ti being the Cartan generators. Also, α are roots in the Lie algebra associated to the gauge

group, mf is the mass of hypermultiplet matter f , where we sum over weights ω in the corresponding

representation of the matter Rf . The first two terms are classical results, and the term in brackets

is the one-loop correction.

The power of the prepotential comes from the fact that, using it, we can easily compute various

quantities, such as the monopole string tension

Ti =
∂F
∂ϕi

, (3.48)

and the effective coupling/metric on the Coulomb branch

(τeff)ij =
∂2F
∂ϕi∂ϕj

. (3.49)

In general, the BPS spectrum of our theories includes electrically charged objects such as W-

bosons, instantons which are charged under the topological symmetry, and magnetically charged

monopoles.

Chern-Simons terms

In a non-Abelian theory in 5-dimensions, we can include the following Chern-Simons terms

κ

24π2

∫
Tr

(
A ∧ F ∧ F − 1

2
A ∧ A ∧ A ∧ F +

1

10
A ∧ A ∧ A ∧ A ∧ A

)
. (3.50)

where κ is the Chern-Simons level. The Chern-Simons level is not gauge invariant, and hence we

need a consistency condition such that it does not contribute to the path integral non-trivially. For

G = SU(Nc) with n+ massive flavours with m > 0 and n− massive flavours with m < 0, the

low-energy effective Chern-Simons level is

κeff = κ− n+ − n−

2
, (3.51)

and for consistency we require κeff ∈ Z.
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4. Brane constructions for 3d theories

The true beauty of supersymmetric gauge theories comes from their realisations via brane configur-

ations in type IIA or IIB string theory. These brane constructions allow us to encode much of the

information of the gauge theory and give detailed insight into non-perturbative effects. In particular,

they allow us to get an intuitive picture of the moduli spaces of supersymmetric theories.

We will begin with the seminal work by Hanany and Witten [7] on 3d N = 4 gauge theories,

realised on the worldvolume of intersecting D3, D5, and NS5 branes. This is to provide a more

pedagogical introduction to brane constructions, which is somewhat more straightforward than the

5-dimensional case we will examine afterwards.

For readers less familiar with branes in string theory, in particular with branes ending on branes

and branes as algebraic objects, the lecture notes [16] offer an accessible introduction.

4.1 General setup

We can construct a 3-dimensional theory with 8 supercharges by placing a D3 brane between two D5

or NS5 branes such that they share a (2+1)-dimensional worldvolume and the remaining dimensions

are allocated as in table 4.1. This can be depicted as in figure 4.1, where the directions corresponding

to the D5 and NS5 branes extend to infinity, whereas the x6 direction of the D3 brane is bound

between the D5 and NS5 branes.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

NS5 × × × × × ×
D3 × × × ×
D5 × × × × × ×

Table 4.1: Brane setup for a 3-dimensional theory breaking 1/4 of the 32 supercharges in type IIB, where
the x6 direction will be spatially restricted between either D5 or NS5 branes.

By inspecting the brane system in table 4.1, we can see that our initial SO(1, 9) Lorentz symmetry

breaks into

SO(1, 2)× SO(3)C × SO(3)H ⊂ SO(1, 9) . (4.1)

Since these symmetries have to represent spinors as well, we can infer that the R-symmetry becomes
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4. Brane constructions for 3d theories

Figure 4.1: Different cases of the brane setup for the D3-D5-NS5 system. The D3 brane is suspended
between: (a) Two NS5 branes, (b) two D5 branes, and (c) one NS5 and one D5 brane. The green arrows
indicate directions in which the D3 brane is free to move. Using these building blocks, one can construct
more complex brane systems.

SU(2)C × SU(2)H.

Suppose we have a single D3 brane; it will have a vector multiplet in 16 supercharges living on

its world volume. If the 3-brane ends on a 5-brane, the total supersymmetry halves and as such, the

vector multiplet decomposes into a vector multiplet and a hypermultiplet

V3d,N=8 = V3d,N=4 +H3d,N=4 . (4.2)

Depending on the type of boundary condition, Dirichlet or Neumann, that the 5-brane imposes, half

of the massless fields are set to zero. The analysis in [7] shows that:

• A D3 brane ending on an NS5 brane results in a vector multiplet on the world volume of the

3-brane. This will be parameterised by the three directions along the NS5 brane (x3, x4, x5)

and a massless gauge field aµ with µ = 0, 1, 2. Making a total of 4 degrees of freedom.

• A D3 brane ending on a D5 brane results in a hypermultiplet, parameterised by the three

directions along the D5 brane (x7, x8, x9) and a scalar b that comes from dimensionally reducing

a 4-dimensional gauge field to 3 dimensions. Again, giving us the necessary 4 degrees of

freedom.

As a consequence, if we have both Dirichlet and Neumann boundary conditions (corresponding to

case (c) in figure 4.1), we do not have any moduli.

With this in hand, we can construct 3d N = 4 pure SYM theories with U(n) gauge group, see

(a) in figure 4.2. If we include D5 branes in between the NS5 branes, we will have additional strings

stretching between the D3 branes and the D5 branes, resulting in hypermultiplets. This is shown in

figure 4.2 (b). This can be extended even further to other algebras by including orientifold planes,

see for example [39].

There is another important concept coming out of [7], namely that of the Hanany-Witten

transition. If you move a D5 brane through an NS5 brane, it creates a D3 brane connecting the

two, and crucially leaves the moduli space unchanged. Schematically, we can illustrate it as shown
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4.2. 3d Mirror symmetry

in figure 4.3.

Figure 4.2: Brane construction for: (a) a pure U(n) SYM theory, (b) a theory with gauge group U(n1)×
U(n2) and additional flavours. The red crosses represent D5 branes going into the page, and should be
thought of as being on top of the D3 branes to give massless hypermultiplets.

Figure 4.3: Hanany-Witten transition. Moving a D5 brane through an NS5 brane creates a D3 brane
which connects the D5 to the NS5 brane.

4.2 3d Mirror symmetry

With the Hanany-Witten transitions at our disposal, we can finally explain an intricacy which the

reader might have already noticed. From our computations of Hilbert series’ in sections 3.4 and 3.5,

we found

H
(

1

n )
= min.An−1 = C

(
1

1

1

1

· · ·

n− 1

)
,

(4.3)
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4. Brane constructions for 3d theories

and similarly

C
(

1

n )
= C2/Zn = H

(
1

1

1

1

· · ·

n− 1

)
.

(4.4)

Where some of these we had found explicitly, and others we only saw examples of.

This is, of course, no coincidence, but due to a duality called 3d mirror symmetry [40, 7]. Different

theories in the UV can flow to the same theory in the IR. The characteristic relations of 3d mirror

symmetry are

Quiver A ↔ Quiver B

HA ↔ CB
CA ↔ HB

SU(2)C/H ↔ SU(2)H/C

FI/mass ↔ mass/FI .

(4.5)

To see why this is the case, we can utilise the Hanany-Witten transitions. Consider the brane

system for U(1) with n flavours as in figure 4.4. By moving two of the D5 branes out of the NS5 branes

on opposite ends, performing an S-duality (NS5 ↔ D5, D3 ↔ D3), and rotating the coordinates that

go into the page up, such that they align with the upwards direction, we arrive at the other quiver.

Figure 4.4: Mirror symmetry of two quivers via Hanany-Witten transitions and S-duality.

4.3 Branches of the moduli space - a brane perspective

A major advantage of the brane picture is the way the moduli spaces are encoded in the relative

positions of the branes. In figure 4.1, we saw that we are free to move the D3 brane along the NS5
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4.3. Branches of the moduli space - a brane perspective

or D5 branes. We also know that this encodes four moduli, three directions, plus either a massless

gauge field or the scalar from dimensional reduction. So it is clear that the position of the D3 brane

along the 5-branes corresponds to a position on the moduli space.

Let us begin with the simple example of U(1) with one flavour, as there is only a Coulomb branch

and no Higgs branch. The Coulomb branch is parameterised by the D3 brane moving along the NS5

branes and has a singular point when it overlaps with the D5 brane, see figure 4.5.

Figure 4.5: Brane realisation of the moduli space of U(1) with one flavour. Coulomb branch C is para-
meterised by the position of the D3 brane along NS5 branes.

Building up in complexity, we can look at U(1) with two flavours, see figure 4.6. The novelty in

this case comes from the fact that, once the D3 brane lies on top of the D5 branes, the part of the

D3 brane which is between the D5 branes is free to move inside and out of the page along the D5

branes. This movement parameterises the Higgs branch.

Figure 4.6: Brane realisation of the moduli space of U(1) with two flavour. In (a) we are on a generic point
on the Coulomb branch C, in (b) we are at the origin of both branches, and in (c) we are on a generic point on
the Higgs branch H. In (c), we have drawn in the third dimension, which before was going perpendicularly
into the page.
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4. Brane constructions for 3d theories

There are two more things that we can do. One is to offset the height of the D5 branes, and the

other is to offset the depth of the NS5 branes, see figure 4.7. This is equivalent to introducing a mass

term and an FI term, respectively. And as a result, for case (a) in figure 4.7, the Higgs branch gets

lifted and the singularity at the origin of the Coulomb branch gets resolved. Similarly, for case (b)

in figure 4.7, the Coulomb branch gets lifted and the singularity at the origin on the Higgs branch

gets resolved.

Figure 4.7: Mass and FI terms via offsets of branes. (a) The Higgs branch gets lifted, and the singularity
gets resolved. (b) The Coulomb branch gets lifted, and the singularity gets resolved.
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Having gained some experience with brane systems in chapter 4, we will turn to the case of 5d N = 1

theories engineered on brane webs consisting of (p, q) 5 and 7-branes. They were first introduced

in the works [9, 10, 41].

5.1 The brane web

Consider the brane configuration in table 5.1, which generalises the Hanany–Witten setup via T-

dualities. The novelty of this construction is that when a D5 brane ends on an NS5 brane in the

(x5, x6)-plane, conservation of the overall R-R and NS-NS charges requires them to form a bound

state. Since the D5 and NS5 branes have charges (1, 0) and (0, 1), respectively, the overall bound

state is a (1, 1) brane.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

NS5 × × × × × ×
D5 × × × × × ×

(p, q) 5-brane × × × × × α

[p, q] 7-brane × × × × × × × ×

Table 5.1: Brane setup for a 5-dimensional theory breaking 1/4 of the 32 supercharges in type IIB.

As Aharony and Hanany found in [9], the resulting bound state will be at an angle α corresponding

to its charges. The angle α is given by tan(α) = qτ2/(p+ qτ1), where τ = τ1 + iτ2 is the axiodilaton.

For illustrative purposes, when drawing brane webs, we choose τ = i, resulting in the relation

tan(α) =
q

p
. (5.1)

We can see this in action in figure 5.1.

We can also note that because there is an SO(3) symmetry rotating the remaining 3 coordinates

x7, x8, and x9, we will have an overall SU(2)R R-symmetry.

To construct a gauge theory in the usual manner by stacking D-branes, we will inadvertently end

up with external branes (otherwise, we are not restricting the x6 direction, and we will have a 6d

theory). Fixing the position of the external branes in space means that we are freezing an overall
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5. Brane constructions for 5d theories

(a) (b)
xs (11) (1,1)D5/(1>8)1 (2,-1)

o
NS5/10,1) Sk-2)

Figure 5.1: (a) A D5 brane combining with NS5 brane to form bound state of a (1, 1) 5-brane. (b) A
(2,−1), (1, 1), and (1,−2) brane web vertex. The overall charge going into the vertices is conserved.

U(1) degree of freedom. This turns our U(n) theories into SU(n) theories. To add hypermultiplets

to our theory, we can include semi-infinite D5 branes. Some examples are shown in figure 5.2.

i ---
semi-infinite

external YD5sy exte Y ↓ D5

Semi-infinite
I
, i

& D5

say (b)

Figure 5.2: (a) Pure SU(2) SYM theory. (b) SU(3) with 2 flavours.

Beyond capturing non-perturbative physics, the brane web also encodes the complete information

of the field theory itself. This can simply be deduced from what types of branes can exist between the

D5 and NS5 branes in the brane web. In particular, we have W-bosons, monopoles, and instantons

arising from F1, D3, and D1 branes, respectively. This is shown in more detail in figure 5.3.

Another important aspect is that the mass of the hypermultiplet mh can be increased arbitrarily

by moving the semi-infinite D5 brane up along the other branes. Once it reaches the top D5 brane,

a flop transition happens where the brane web adjusts to conserve charge. This is shown in figure

5.4.

Coulomb branch

In general, we can distinguish between two types of deformations: local deformations, where the

external legs are fixed, and global deformations, where they are not, see figure 5.5. Recall that the

dimension of the Coulomb branch is the rank of the gauge group, and since in 5-dimensions we only

have a single real scalar in the vector multiplet, the Coulomb branch of, say, SU(2) pure SYM will

be parameterised by this single real scalar. In the brane picture, the scalar corresponds to the size
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monopole
/xW-boson
D3F1

at
X

Figure 5.3: BPS states from brane web. The bare coupling strength is given by m0 = 1/g20, and the
masses of hypermultiplets, instantons, and W-bosons are mh, mI , and mW , respectively. The red line is an
F1 string corresponding to a W-boson, the purple line is a D3 brane corresponding to a monopole, and the
orange line is a D1 string corresponding to an instanton.

↑
↑

↑
Ima fromImm

(a) (b) (C)

Figure 5.4: Flop transition for SU(2) theory with 1 flavour. In all stages of the transition (a) - (c), the
charge at the vertices is conserved.
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5. Brane constructions for 5d theories

of the face, and thus, in general

rank(Ggauge) = number of local deformations = Einternal − V + 1

= Finternal ,
(5.2)

where Einternal are non-external branes, V are vertices, and Finternal are the faces. A similar relation-

ship holds for the global symmetry

rank(Gglobal) = number of global deformations = Eexternal − 3 , (5.3)

where Eexternal are the external legs.

-> F
T

7 ->

↓
-> 1

(a) (b)

Figure 5.5: Deformations for SU(2) pure SYM theory: (a) local transformation, and (b) global transform-
ation. Local deformations parameterise the Coulomb branch.

7-branes and the S-rule

Up to this point, we have allowed the external 5-branes to extend to infinity. For analysing the Higgs

branch, however, it will be crucial to restrict these legs by letting each of the (p, q) 5-branes end on a

[p, q] 7-brane. A [p, q] 7-brane is a co-dimension 2 object and thus sources an SL(2,Z) monodromy.

Choosing a monodromy cut emanating from the 7-brane, the axio-dilaton τ jumps by this SL(2,Z)
element across the cut, as well as any (p, q) 5-brane crossing the cut must have its charge adjusted

accordingly. The monodromy of a [p, q] 7-brane is given by

M[p,q] =

1− pq p2

−q2 1 + pq

 . (5.4)

If a (p, q) 5-brane crosses the monodromy cut of a [P,Q] 7-brane, its charge vector transforms, over

the cut, as r
s

 =M[P,Q]

p
q

 . (5.5)

Additionally, this allows us to generalise the Hanany-Witten transition to moving a 7-brane

through a 5-brane. For example, in figure 5.6, we can move a 7-brane, which has a 5-brane ending
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5.1. The brane web

on it, past the vertex. The 5-brane that connected the 7-brane to the vertex vanishes, but due to

the monodromy cut the other 5-branes remain as they were.

-- *Monodromy &
cut

↑
--- H-W -----------
-

·[0,117-brane &

"
Figure 5.6: Inclusion of [p, q] 7-branes (blue dots) on a simple vertex. After a Hanany-Witten transition
of one of the 7-branes, the monodromy cut causes the upper-right 5-brane to tilt in the same way as before.
We will usually not draw monodromy cuts if they are not relevant.

In [7], the authors found that you cannot have more than one D3 brane between a D5 and an

NS5 brane without breaking supersymmetry. Something similar is true for brane webs, namely, you

cannot have more than one D5 brane between a 7-brane and a brane with an NS-NS charge1. This

phenomenon is usually referred to as the generalised S-rule [42].

Toric diagrams

A convenient and clean way to package the information of a 5-brane is via its dual diagram - often

called the grid or toric diagram. It is constructed via the following rules:

(i) vertices of the web ↔ polygons in the dual,

(ii) faces of the web ↔ points in the dual,

(iii) edges of the web ↔
⊥

lines in the dual,

The last item means that each edge in the brane web gets replaced by a line that is perpendicular

to the original edge. The explicit construction can be seen in figure 5.7.

The toric diagram encodes most of the data from the original brane web in a very orderly manner,

in particular, the non-perturbative data, but it loses all the size-related information, like coupling

strengths or mass values.

While we use toric diagrams here as a convenient tool to encode brane webs, their more profound

significance lies in geometric engineering. A toric diagram, which is convex, defines a specific toric

Calabi-Yau threefold, and the low-energy limit of M-theory on R1,4 × CY3 is equivalent to the 5d

SCFT that emerges at the infinite coupling limit of the corresponding brane web [43].

The notion of toric diagrams can also be generalised to non-toric geometries, which allows for

multiple 5-branes to end on a 7-brane. These are called generalised toric polygons [44]. This different

1If a given brane web breaks supersymmetry is, in general, an unsolved problem.
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5. Brane constructions for 5d theories

& & D &

& & &

& & a &

Figure 5.7: Toric diagram (black) and brane web (blue) of SU(2) × SU(2) with 4 flavours with some
arbitrary tesselation.

boundary condition is encoded as a white point. So if multiple 5-branes end on the same 7-brane, the

faces in between the edges of the web become white points. If the 5-branes end on separate 7-branes,

the faces are the normal black points. See figure 5.8 for an illustration.

·
*

& · 7)

(a) ·

.

(b)
Figure 5.8: (a) Part of the brane web with multiple 5-branes ending on the same 7-brane. (b) Corres-
ponding generalised toric diagram, where the boundary condition is encoded via the white points.

Chern-Simons level from web diagram

Recall from section 3.6 that we can have a Chern-Simons level which takes discrete values. For some

general SU(n) theory with n+ flavours with positive mass and n− flavours with negative mass, the

low-energy theory will have a Chern-Simons level of

κeff = κ− n+ − n−

2
∈ Z . (5.6)

In [45], the author shows how the Chern-Simons level manifests itself in the brane web of an

SU(n)κ theory with and without flavours. This is shown in figures 5.9 and 5.10. For the theory with

flavours, we first have to integrate them out, that is, move them up/down such that they end up on

the heavy legs and we get a low-energy theory for which we can use (5.6).
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5.2. Higgs branch and magnetic quivers

One can also immediately read all the relevant information from the toric diagram, see figure

5.11.

(n.-1) (0.1)
(0,1)

(n-15,-1)

... ... :
...

(n.-1)
Sk,1)

(n=-1)
10,1)

(a) (b)

Figure 5.9: (a) SU(n)0 with no flavours. (b) SU(n)κ with no flavours. The Chern-Simons level is
introduced by changing the charges of some of the heavy branes.

(n-Keff ,-1)
(0,1)· In .

(keff,1)

...

(n.-1)

In-

Figure 5.10: SU(n)κ with n+ + n− flavours. To find the original Chern-Simons level κ, we integrate out
the flavours by moving them onto the heavy branes, and then read off the effective Chern-Simons level from
which one can compute the original Chern-Simons level.

5.2 Higgs branch and magnetic quivers

We can access the Higgs branch by shrinking all faces via local deformations and making the hy-

permultiplets massless; in essence, we are moving all the D5 branes to the same x5 coordinate. The

degrees of freedom associated with moving valid subwebs in and out of the page along the 7-branes

parameterise the Higgs branch.

In figure 5.12 (a), we start with the brane web for an SU(2) theory with 4 flavours. We make all

hypermultiplets massless and shrink the faces to zero. In figure 5.12 (b), we recognise that there are

now subwebs, which on their own satisfy all conditions for a valid brane web (conserving charges at

vertices and not violating the S-rule). In addition, we may choose a decomposition which is maximal,

meaning none of the subwebs can be further decomposed into other subwebs.

By conjecture 1, we know that there exists a 3d N = 4 quiver whose Coulomb branch is the same

as the Higgs branch of our 5d N = 1 theory at hand. This quiver is called the magnetic quiver and

can be read off the brane system. In figure 5.12 (c), we recognise four separate branes corresponding

to U(1) gauge group factors and one corresponding to a U(2) factor. In this simple example, whether

the subwebs cross/meet on the same 7-brane determines if we have an edge between the gauge nodes.
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↓(0,1)

Y
*

* &

↓In-Keff,-1)- DaYn-a a*

& a &
Nt
*! & &
->+ (n,-1)

& &

↳e
Figure 5.11: Toric diagram for SU(n)κ with n+ + n− flavours. One can easily read off all the relevant
information to compute the original Chern-Simons level.

(a) (C)(b)
* &

U(1) 4317& a
·i

&
⑨

&

**-&

& ·
& A

* A
↑

Figure 5.12: For SU(2) with 4 flavours, we have: (a) A generic point on the Coulomb branch. (b) A
point on the Higgs branch, coloured subwebs can be moved in and out of the page along the 7-branes. (c)
Magnetic quiver from subweb decomposition.
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5.2. Higgs branch and magnetic quivers

Tropical geometry

There is some subtlety about the number of hypermultiplets transforming in the bifundamental

representations of the gauge subgroups, that is, how many edges are between two given gauge nodes.

As it turns out, we can borrow the concept of a stable intersection from the literature on tropical

geometry2.

Definition 13. The stable intersection between two 5-brane subwebs is

SI =
∑
i<j

|det

pi qi

pj qj

 | , (5.7)

where (pi, qi) and (pj, qj) are the charges of the intersecting 5-branes in the respective subwebs.

The stable intersection is invariant under small movements of the corresponding subwebs. We

may move two overlapping subwebs apart in any direction, without changing the value of the stable

intersection. Another way to compute the stable intersection is from the toric diagram as the area

of polygons with differently coloured edges, see figure 5.13.

**

1
=
* *&

1

& D

Figure 5.13: The stable intersection of the two subwebs is 2. This can be computed either via the definition
of the stable intersection or by calculating the area of polygons with differently coloured edges in the toric
diagram.

Contrary to the literature on tropical geometry, our curves (or 5-branes) end on 7-branes. And

the stable intersection changes if we perform Hanany-Witten transitions. The answer to how we may

generalise the stable intersection, and what the number of edges between two gauge nodes is, is the

same.

Conjecture 2. The number of edges between two gauge nodes is given by the following quantity

between their respective subwebs

E = SI+
∑
i

Xi −
∑
i

Yi , (5.8)

where SI is the stable intersection, Xi and Yi are contributions from the 7-branes. Xi is the total

number of pairs of two subwebs ending on the ith 7-brane - on the same side. Yi is the total number

of pairs of two subwebs ending on the ith 7-brane - on the opposite side.

2The adjective ’tropical’ here is to honour the work by Imre Simon, whose Brazilian origin - according to French
mathematicans - may be described as tropical.
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5. Brane constructions for 5d theories

As hinted at above, this quantity stays invariant, even after Hanany-Witten transitions and is the

natural generalisation of the stable intersection in the case of curves that do not extend to infinity.

Example 10. For the brane system in figure 5.12 (b), we can now compute the various edge

numbers explicitly.

Clearly, the green and orange subwebs will only have an edge number with the red subweb.

This comes from the intersection only, as the different subwebs do not end on the same 7-branes.

We compute it to be

E = |det

0 1

2 0

 | = 2 , (5.9)

and since the red subweb corresponds to U(2) with rank 2, there will be a single edge between

the green/orange and red node.

Similarly, for one of the blue subwebs, it only has edges with the red subweb. But this time,

it comes from the 7-brane contributions

E = 1× 2− 0 = 2 , (5.10)

where a single blue brane may be paired with either of the two red branes on the other side of

the 7-brane. Again, we have a single line between the nodes.

This does indeed reproduce the magnetic quiver we have in figure 5.12 (c).

5.3 Higgs branch at finite coupling - an example

Let us investigate the more involved example of SU(3) with 4 flavours. At finite coupling, the Higgs

branch is - as usual - parameterised by the massless hypermultiplets. At infinite coupling, we will

additionally have massless instantons contribute to the Higgs branch. The analysis in both scenarios

is very similar, and we will highlight the differences as they appear.

Figure 5.14 shows the toric diagram and corresponding brane web. At finite coupling, the Chern-

Simons level does not matter, and here we choose the arbitrary value κ = 0. In figure 5.15 (a) and

(b), we have two inequivalent maximal decompositions. This means that the Higgs branch is the

union of two cones. In (c), we can inspect the decomposition that includes both of the maximal

decompositions; this gives us another magnetic quiver corresponding to a non-trivial intersection of

the cones. The two cones are called the mesonic HM and the baryonic cone HB. Baryons have a

charge under some U(1)B, thus we expect this U(1)B factor to be present in the global symmetry of

the cone. We will discuss how to find the global symmetry in section 6.3.

Crucially, because of conjecture 1, we can now use all of the tools developed for 3 dimensions

on the magnetic quivers. As such, we may calculate their Hilbert series and match these to known
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& D & (11)
&
(0,1)

* DA 321

& DA~ ->
* *

& A I -1)
Figure 5.14: Toric diagram and brane web for SU(3)0 with four flavours.
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Figure 5.15: Phases of Higgs branch for SU(3)0 with four flavours at finite coupling. (a) Baryonic cone of
the Higgs branch. (b) Mesonic cone of the Higgs branch. (c) Intersection of the two cones, found by finding
the decomposition that includes both the baryonic and mesonic parts. (d) Point on the Coulomb branch.
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symplectic singularities or closures of nilpotent orbits from, for example, the catalogue in [46]. But

since these quivers are well known in the literature, see [47], we just state the result:

C
(

1 1 1

1 1 )
= Baryonic extension of min.A3 ,

C
(

1 2 1

1 )
= n.min.A3 ,

C
(

1 1 1

1 )
= min.A3 .

(5.11)

5.4 Higgs branch at infinite coupling - an example

As alluded to in the introduction 0, much of the interest around 5-dimensional theories is centred

around the infinite coupling limit where the theory can flow to an interacting SCFT at the UV fixed

point. Due to the presence of massless instantons in this limit, the Higgs branch can open up new

directions, and the global symmetry is enhanced.

At infinite coupling, we have to take the Chern-Simons level into account. This can complicate

matters significantly, in particular, if we have a series of Hanany-Witten transitions to perform to

reach a fixed point. A priori, it is not clear whether a fixed point even exists. For illustrative

purposes, we have obviously chosen the Chern-Simons level such that we will not run into any of

these issues here.

The analysis follows in the same way as for the finite coupling case, with the exception that the

decomposition of the brane web changes. To reach the infinite coupling limit, we shrink the distance

labelled 1/g2 in figure 5.14 to zero. The possible subweb decompositions and their intersection are

shown in figure 5.16. The quiver for the baryonic cone stays the same, but the mesonic cone now

has a new quiver associated with it.

50



5.4. Higgs branch at infinite coupling - an example
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Figure 5.16: Phases of Higgs branch for SU(3)0 with four flavours at infinite coupling. (a) Baryonic cone
of the Higgs branch. (b) Mesonic cone of the Higgs branch, which enhances due to instanton contributions.
(c) Intersection of the two cones.
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The purpose of this chapter is to introduce some more specific methods and tools that are commonly

used. This ranges from tools like Hasse diagrams to encode the singularity structure of symplectic

singularities, over a quiver subtraction algorithm to generate the Hasse diagrams [3], to a method to

read off the global symmetry from a quiver without having to compute its Hilbert series [48].

6.1 Hasse diagrams

In supersymmetric gauge theories with 8 supercharges, the scalars that parameterise the Higgs

branch, upon acquiring a vev, break the gauge group to some subgroup. This process is called the

Higgs mechanism. For a theory with enough matter content, the gauge group breaks completely

on a generic point on the Higgs branch. However, on certain special subspaces, some subgroups

remain unbroken. This process of partial Higgsing gives us a rich and intricate structure. At any

such subgroup, we may break the symmetry even further, but there may also be subgroups which

are not immediately accessible, giving us a natural partial ordering.

To encode this partial ordering, we can use Hasse diagrams. A Hasse diagram is a graphical

representation of a finite partially ordered set (poset). It captures the relation between two elements

(dots) via the edges they have with each other. For example, consider the set {x, y} with the partial

ordering given by inclusion, meaning A ≤ B if set A is in set B. For the set {x, y}, we have

{x, y}

{x} {y}

{}

Geometrically, the Higgs branch is a symplectic singularity, which admits a natural stratification

into symplectic leaves. The symplectic leaves are submanifolds which are partially ordered by the

inclusion of their closures, see section 2.3. The key insight is captured in the following:

Conjecture 3. The Hasse diagram describing the geometric stratification of the Higgs branch moduli

space is identical to the one describing the pattern of partial Higgsing.
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6.1. Hasse diagrams

A representation theory perspective

Let us begin with explicitly going through the representation theory of partial Higgsing. We will

follow the example of SU(3) with 6 flavours in [3]. The gauge group SU(3) has the following possible

subgroups: SU(2)× U(1), SU(2), U(1)2, U(1), and the trivial subgroup {1}.

For SU(3) breaking to SU(2): We first look at how some basic representations reduce from A2

to A1

[10]A2 or [01]A2 → [1]A1 + [0]A1 ,

[11]A2 → [2]A1 + 2[1]A1 + [0]A1︸ ︷︷ ︸
acquire mass

, (6.1)

where the vector of A2 decomposes to the vector of A1 together with some other representations,

which will then acquire a mass. The hypermultiplet reduces to

6([10]A2 + [01]A2) → 12[1]A1 + 12[0]A1 . (6.2)

The Higgs mechanism will now ”eat” the components of the hypermultiplet that transform in the

same representation as the one corresponding to the broken generators of the gauge group, i.e. the

irreps that acquire a mass in the above. We are left with

12[1] + 12[0]− 2(2[1] + [0]) = 8[1] + 10[0]

= 4([1] + [1])︸ ︷︷ ︸
4 hypermultiplets

+ 5([0] + [0])︸ ︷︷ ︸
scalars parameterising subgroup

, (6.3)

where we have 4 hypermultiplets remaining. This gives us the theory SU(2) with 4 flavours, and we

have some scalars that parameterise the directions in the Higgs branch corresponding to the unbroken

SU(2) symmetry with dimension 5.

For SU(3) breaking to SU(2)× U(1): Again the relevant representations reduce as

[10]A2 → q−2[1]A1 + q1[0]A1 ,

[01]A2 → q−1[0]A1 + q2[1]A1 ,

[11]A2 → [2]A1 + q3[1]A1 + q−3[1]A1 + [0]︸ ︷︷ ︸
cannot acquire mass

.
(6.4)

For this case, there is no match between what the hypermultiplet (bifundamental representation)

reduces to and what the vector multiplet (adjoint representation) reduces to. This means there are

no Goldstone modes available and Higgsing is impossible. Similarly, breaking to U(1)2 and U(1) is

impossible.
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For SU(2) breaking to {1}: Everything just maps to 1 so

[1]A1 → 2 ,

[2]A1 → 3 .
(6.5)

The four hypermultiplets 4([1]+[1]) reduce to 16, and taking away twice the vector multiplet 2[2] → 6

gives us a 10-dimensional space.

We have thus found the Hasse diagram to be

10{1}

5SU(2) + 4F

0SU(3) + 6F

where we have denoted the theory it corresponds to on the left-hand side, and the dimension of the

Higgs branch preserving the theory on the right-hand side.

A geometric perspective

For any symplectic singularity, there exists a stratification of symplectic leaves corresponding to the

partial ordering

Li < Lj if Li ⊂ Lj . (6.6)

We may expand on example 3 in section 2.3 by giving its Hasse diagram and use this to illustrate

a crucial point of this perspective:

2 L2 = Xreg

1 L1

0 L0

We associate the most singular point L0 with the full unbroken gauge theory, and we can see this

more explicitly if we consider the transverse slice between this leaf and the top leaf

T 2
0 = T0 ∩ L2

= X ∩X = X ,
(6.7)

which is the moduli space - i.e. symplectic singularity - corresponding to full gauge theory. Hence,

the transverse space of a symplectic leaf is the moduli space of the (partially) broken gauge theory.

And for our representation theory example above, we can write this as
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10

5

0

{1}

3

6

2

4

where the braces indicate the transverse slice between the two leaves at each end.

6.2 Quiver subtraction

To find the symplectic leaves and transverse slices in the symplectic singularity, we make use of

an algorithm called quiver subtraction. The algorithm comes from translating operations on the

brane system of a theory into the language of quivers.

Consider again the example of SU(3) with 6 flavours. Beginning at a generic point on the Higgs

branch, we write down the corresponding brane system, as shown on the left-hand side of figure 6.1.

We then realign some of the light branes such that we may open up Coulomb branch directions of

the moduli space. This corresponds to a Kraft-Procesi transition [49, 3] in 5-dimensions. And

repeating this process, we find all brane systems corresponding to the symplectic leaves.

* A I I

· & & * * 1·
* * ↓ I

↓ Kraft-Procesi
Quiver subtraction-* a

transition

I I
↳

& * & 1-
& A ·
↓ k-P I

& !.
I I I 1

o1

·
& a

Figure 6.1: Kraft-Procesi transitions of 5-branes on the left-hand side and, equivalently, quiver subtraction
on the right-hand side.

The conceptual idea of the quiver side, as shown on the right-hand side of figure 6.1, is that,

starting from the relevant magnetic quiver, we can subtract a set of quivers, called elementary
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6. More tools in quiver gauge theories

slices, from the initial quiver to get the quiver corresponding to the next symplectic leaf, i.e. the

brane system with a Coulomb branch direction opened up.

An important note is that this algorithm fails if we can subtract the same elementary slice twice

in a row. In this case, we need to extend the formalism to include decorations of nodes in the quiver.

This is explained in more detail in [50].

The algorithm

To make the above explanation more concrete, we present here the full algorithm, as developed in

[3]. Suppose we have two symplectic leaves L and L′ connected by a transverse slice in their Hasse

diagram. Each of these pieces is represented by a magnetic quiver Q, Q′ and D, respectively. To

move from the higher leaf to the lower, we subtract the transverse slice quiver. Schematically we

have

Q−D = Q′ . (6.8)

One last piece of information that we will need in the following is the idea of balance.

Definition 14. The balance bi of the ith node in a quiver is defined as

bi =
∑
j

nj × ej − 2ni , (6.9)

where j is over all the nodes connecting to the ith node, nj is the node rank, and ej is the number

of edges connecting the jth node to the ith node.

The elementary slices are assumed to be either minimal nilpotent orbit closures or Kleinian

singularities, see table 6.1. To subtract an elementary slice D from the quiver Q, we proceed as

follows:

(i) Align quivers Q and D.

(ii) Subtract the node numbers of D from the ones in Q. If this yields a negative number, the

subtraction of D is not possible.

(iii) If the balance of any of the nodes changes, add a single additional U(1) node and connect it

to all those nodes, possibly multiple times. The balances of Q and Q′ should be the same

after this.
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6.2. Quiver subtraction

Slice Quiver Dimension Slice Quiver Dimension

an

1 1

1

· · ·

n

n bn

1 2 2

1

2 1
· · ·

n

2n− 2

cn

1 1 1 1
· · ·

n+ 1

n dn
1 2 2

1

2 1

1

· · ·

n− 1

2n− 3

e6

1 2 3 2 1

2

1

11 e7

1 2 3 4 3 2 1

2
17

e8

1 2 3 4 5 6 4 2

3
29 f4

1 2 3 2 1
8

g2
1 2 1

3 acn
1 1 1 1 1

· · ·

n+ 1

n

ag2
1 1 1

2 cg2
1 1 1

2

hn,k 1 1 1 1 1

k · · · k

n+ 1

n h̄n,k
1 1 1 1 1k

· · ·
k

n+ 1

n

An

1 1

...

n+ 1
1

Table 6.1: Elementary slices.
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Let us illustrate this step-by-step in figure 6.2. By simply overlaying the quivers and subtracting

the node numbers, we get a linear quiver with five U(1) nodes. The nodes at the end, which were

previously balanced, are now unbalanced. Thus, we add an additional node which we connect to

both of the unbalanced nodes, restoring their original balance. An important note is that if the

quiver was previously unbalanced, it needs to maintain the same unbalance in the new quiver after

subtraction. Also, the newly added node may be unbalanced.

11 11 I

b=-1 b=-1 b=0

I - I I --- ->↓-

- - -

↓ 2321 12- ↓ 111 I

1 11. 1

Figure 6.2: Illustration of quiver subtraction process. We overlay two quivers and subtract the node
numbers, then to restore the original balance, we add an additional U(1) node.

And finally, we just note the importance of edge multiplicities. Quivers can only be subtracted

from one another if the edge multiplicities match identically. For example, the quiver

1 1

1

only has an a1 slice and not an a2 slice. Similarly, the quiver

1 1 1

1

only has an a2 slice and not an a3 slice.

6.3 Global symmetry

The global symmetry can always be read from the t2 term in the relevant Hilbert series. But since this

can, at times, be tedious to compute, there is a neat method which also tells us the global symmetry

of the Coulomb branch of a 3-dimensional theory (or, equivalently, the Higgs branch in dimensions 3

to 6). Unfortunately, this method is not entirely foolproof and sometimes will only reveal a subgroup

of the global symmetry. This happens when, in the Hasse diagram, we can subtract the same slice

twice in a row.

The algorithm as such is straightforward [48]:
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Framed quiver: If the quiver comprises of s balanced sub-Dynkin diagrams Di of the simple Lie

groups Gi, and k unbalanced nodes, then the global symmetry is

GS =
s∏
i=1

Gi × U(1)k . (6.10)

Unframed quiver: There are two possible cases:

(i) If all nodes are balanced, then the quiver is the (twisted) affine quiver for some simple Lie

group G, see an to g2 in table 6.1, and the global symmetry is simply

GS = G (6.11)

(ii) If there are unbalanced nodes, for a quiver comprising s balanced sub-Dynkin diagrams Di of

the simple Lie groups Gi, and k unbalanced nodes, then the global symmetry is

GS =
s∏
i=1

Gi × U(1)k−1 . (6.12)

Example 11. Consider the quiver in figure 6.3. We have two unbalanced nodes and an A3

Dynkin subdiagram. As it is an unframed quiver, the global symmetry is

GS = SU(4)× U(1) . (6.13)

b=1 b=1

11 Gs= SU(4)x((1)
-

↓ 1
--

Az[S4(4)

Figure 6.3: Global symmetry of unframed quiver with two unbalanced nodes (red) and an A3 Dynkin
subdiagram.
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Calculations
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7. A general pattern for a family of

balanced quivers of type An

A general quiver theory of type An may be written as:

SU(k1)κ1

N1

SU(k2)κ2

N2

SU(kn)κn

Nn

· · ·

where for each gauge node we have three parameters: the rank of the gauge group ki−1, the number

of flavours Ni, and the Chern-Simons level κi. This is, unfortunately, too large a parameter space to

do any analysis on.

Instead, we decide to restrict the space in various ways to get exact insights. In this chapter,

we focus on balanced quivers with zero Chern-Simons level with flavours only on the outside nodes.

That is, quivers of the form:

k + l

k

k + 2l k + nl

k + (n+ 1)l

· · ·

where we initially have n + 2 node numbers, but due to balance and the setup, it reduces to two

independent variables k and l.

7.1 A bunch of examples

Before presenting the general pattern, it is illustrative to consider the first few examples of this

family.

Theories of type A1

This case has been extensively studied in the literature. See, for example, [15, 47]. Let us restate

some of the results here. First, the A1 quiver we are considering is
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7. A general pattern for a family of balanced quivers of type An

k

2k

with classical global symmetry

U(2k)× U(1) . (7.1)

The toric diagram with zero Chern-Simons level is shown in figure 7.1. The corresponding brane

webs, at finite and infinite coupling, are shown in figure 7.2.

& da

* *

k ·! Da& * a

& D A

Figure 7.1: Toric diagram for balanced quiver of type A1 with zero Chern-Simons level.

(a)
I

·
'........

& &

&

(b) I

& 2

2

k
-·'... 0 o-"'o

&

I

&

Figure 7.2: Brane system and magnetic quiver of balanced A1 theory: (a) finite coupling and (b) infinite
coupling. For branes where the angle, and thus the charge, is clear from the picture, we will only write the
multiplicity.

At finite coupling, we have two separated vertical 5-branes that act as individual subwebs. This

leads to a linear quiver going from 1 to k and back to 1 again, with 2 prongs for the vertical subwebs.

The global symmetry is

GSfinite = SU(2k)× U(1) , (7.2)
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7.1. A bunch of examples

for k ≥ 3. We note that due to quantising the theory, the global symmetry has changed as U(2k)×
U(1) → SU(2k)× U(1).

For the infinite coupling case, we extend the length of one of the vertical branes such that the

different 7-branes will not overlap before moving them together. This results in three vertical and

independent subwebs with multiplicities 1, 1, and 2. And the magnetic quiver begins to exhibit a

”forking” mechanism, where only one of the vertical nodes is connected to the main linear part of

the quiver. The global symmetry changes to

GSinfinite = SU(2k)× SU(2)2 , (7.3)

for k ≥ 3.

Theories of type A2

Having dealt with the A1 case, we can move on to quivers of type A2. These are not as prevalent in

the literature. They take the form:

k + l

k

k + 2l

k + 3l

with classical global symmetry

U(k)× U(k + 3l)× U(1)3 . (7.4)

The toric diagram with zero Chern-Simons level is shown in figure 7.3 and the brane systems and

magnetic quivers for the various coupling phases are shown in figure 7.4. Crucially, the magnetic

quivers again exhibit the ”forking” mechanism already observed for A1.

&

*

es o a &

& * D

Hi
Bada

Figure 7.3: Toric diagram for balanced quiver of type A2 with zero Chern-Simons level.
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7. A general pattern for a family of balanced quivers of type An

I
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(a)
l l

(1) (1)su-8
,
0 ....

K & I
I

·.'d
I

82(1,-1) (l=
-1)

2
(by

22 I

· (l.-1)-8
,
0 ....

K k+2 k+2(2-1)k+22 kk+2
2 I

* *

I
*

· (R,
-1)

· 2(2.
-1)

(c) · 3(2-1)
32 31-3 -

& * ... D · 0 ... 300..... - M...I K
3

k+2 k+2(2-1)k+22 I

·
Figure 7.4: Brane systems and magnetic quivers for balanced quiver of type A2 at: (a) finite-finite
coupling, (b) finite-infinite coupling, and (c) infinite-infinite coupling. Note that because we have higher
NS-NS charges of 2 and 3 for some of the subwebs in (b) and (c), the number of 5-branes allowed to end on
7-branes also increases to 2 and 3, respectively.

For k + 2(l − 1) ≥ 1, the global symmetries are

GSfin. - fin. = SU(k)× SU(k + 3l)× U(1)3 ,

GSinf. - inf. = SU(k)× SU(k + 3l)× SU(2)2 × U(1)2 ,

GSinf. - inf. = SU(k)× SU(k + 3l)× SU(3)2 × U(1) .

(7.5)

Theories of type A3

For A3, the quiver takes on the form:

k + l

k

k + 2l k + 3l

k + 4l

and the classical global symmetry is

U(k)× U(k + 4l)× U(1)4 . (7.6)

The toric diagram takes on the usual form, as can be seen in figure 7.5. In figure 7.6, we can see the

brane system for all coupling strengths being finite. Then, based on the coupling we sent to infinity,
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7.2. The pattern in terms of partitions of n+ 1

we move the corresponding vertical branes together, obtaining the familiar forking mechanism of the

arms of the magnetic quiver. The magnetic quivers are shown in figure 7.7.

*

& A

Bad

e)
· a

B- x

---a
:·

B daa

Figure 7.5: Toric diagram for balanced quiver of type A3 with zero Chern-Simons level.

a
I

& D ... D

el i p... .....,I K k+3 k+3(2-1) k+39

& * & a

Figure 7.6: Brane system for balanced A3 type quiver with all gauge couplings finite.

For k + 3l − 2 ≥ 1, the global symmetries of the different phases are

GSfin. - fin. - fin. = SU(k)× SU(k + 3l)× U(1)4 ,

GSinf. - fin. - fin. = SU(k)× SU(k + 3l)× SU(2)2 × U(1)3 ,

GSinf. - fin. - inf. = SU(k)× SU(k + 3l)× SU(2)4 × U(1)2 ,

GSinf. - inf. - fin. = SU(k)× SU(k + 3l)× SU(3)2 × U(1)2 ,

GSinf. - inf. - inf. = SU(k)× SU(k + 3l)× SU(4)4 × U(1) .

(7.7)

7.2 The pattern in terms of partitions of n + 1

For concreteness, let us focus on figure 7.7. The nodes connecting to the node with label k + 3l

clearly form partitions of 4. Furthermore, if they have a value of 2 or greater, there are two arms

with nodes decreasing in value by 1 connected to that node. The case of all coupling strengths being

infinite corresponds to the highest partition, (4) in this case, and the case of all coupling strengths

being finite corresponds to the lowest, (14).

Let us now formalise this a little more. Any integer partition of n+1 can be written in its normal

notation

(λ1, . . . , λr) , (7.8)
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7. A general pattern for a family of balanced quivers of type An

1

(a)

-·
I K I kk+3

/
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·...... I V
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I K k+3 k+32

Figure 7.7: Magnetic quivers of balanced A3 type quiver at different coupling phases.

with λ1 ≥ · · · ≥ λr, such that λ1 + · · · + λr = n + 1. Or, in its fully simplified form, where an

exponent indicates repeated elements

(µa11 , . . . , µ
as
s ) , (7.9)

with µ1 > · · · > µs.

From a given structure of finite and infinite gauge coupling strengths, we can translate to an

integer partition using the following rules:

(i) Every finite coupling corresponds to 2 consecutive elements in the partition. If there are only

finite couplings, this means we will have n+ 1 factors of 1.

(ii) For every row of m consecutive infinite gauge couplings, we get a factor of m + 1 in the

partition.

This is equivalent to simply starting with n + 1 factors of 1, and then iteratively, for each new

infinite coupling, merging adjacent factors. Let us briefly give some examples. For the coupling

phase infinite-infinite-finite, the partition is (3, 1). And for the phase infinite-finite-infinite, we have

(2, 2).

Conjecture 4. We have that:

(i) The set of partitions P(n + 1) is in one-to-one correspondence with the different coupling

66



7.2. The pattern in terms of partitions of n+ 1

phases of balanced An theories with flavours only on the outside gauge nodes. Some phases

can be realised in multiple ways, leading to multiplicities which are given by

r!

(a1!) . . . (as!)
, (7.10)

where r corresponds to the r in (λ1, . . . , λr) ∈ P(n + 1) and the ai correspond to the ai in

(µa1 , . . . , µas) ∈ P(n+ 1).

(ii) The magnetic quiver of the coupling phase encoded by the partition (λ1, . . . , λr) is given by

figure 7.8.

(iii) The global symmetry of the magnetic quiver with coupling phase (µa11 , . . . , µ
as
s ) = (λ1, . . . , λr),

and n ≥ 2, is

SU(k)× SU(k + (n+ 1)l)× SU(µ1)
2a1 × · · · × SU(µs)

2as × U(1)r . (7.11)

I

-
M·M

↓

k+nl-1

Figure 7.8: Magnetic quiver for balanced An type quiver in the coupling phase corresponding to the
partition (λ1, . . . , λr) ∈ P(n+ 1). If any of the λi is larger than 1, the node will have two arms going down
in decrements of 1.
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8. The finite coupling case of arbitrary

quivers of type A2

We take inspiration from the analysis in [47], and extend the analysis to some cases of a completely

general quiver of type A2 at finite coupling.

8.1 The setup and all possible cases

At finite coupling, the Chern-Simons level does not impact our theory. From a brane perspective,

this can be explained by noting that one can always adjust the lengths of the external branes such

to avoid any crossing. From the field theory point of view, the Chern-Simons terms only affect

the vector multiplet, which we set to zero. Only once we have instantons contributing at infinite

coupling, we have to consider the impact of the Chern-Simons level.

This means that our toric diagram does not need to be convex anymore, and we may move parts

of it around to simplify our calculations. A general quiver of type A2 is of the form:

k2

k1

k3

k4

and for its toric diagram we choose to maintain a flat bottom such that we will only get (0, 1) 5-branes

on the bottom half of the brane web, see figure 8.1.

4)* Net

(a) (b) * ⑨
(Ab.-1)(Ac:-1)(A1,-1)

-ka ky k4

& * *

Figure 8.1: (a) Toric diagram for general quiver of type A2. (b) Corresponding brane web, where we have
defined ∆1 = k2 − k1, ∆2 = k3 − k2, and ∆3 = k4 − k3.
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8.2. The case k1 ≤ k2 ≤ k3 ≤ k4

It will be useful to redefine some quantities:

∆1 = k2 − k1 , ∆2 = k3 − k2 , ∆3 = k4 − k3 . (8.1)

Then, depending on the value of the ∆i, subwebs extend to the left or right side of the corresponding

vertical brane. This can be seen more clearly in figure 8.2. Thus, a priori, we have the following

cases

∆1


> 0

= 0

< 0

and ∆2

> 0

= 0
and ∆3


> 0

= 0

< 0

(8.2)

where ∆2 has one less case because the quiver is symmetric. This gives us a total of 18 cases, but as

it will turn out, there are actually more than this due to additional conditions of subweb formations

that we will run into later.

·

(A,-1)(A,- 1)
10,1)

A A

(0,1) 10,1)

(a)10 (c) A=0(b) A)0

Figure 8.2: Subweb formation based on value of ∆: (a) ∆ < 0, (b) ∆ > 0, and (c) ∆ = 0.

8.2 The case k1 ≤ k2 ≤ k3 ≤ k4

The first 8 cases can be dealt with together. Let us first assume k1 < k2 < k3 < k4, and then

consider what would happen if we have an equality. As a consistency condition, we can check that

our analysis here replicates the magnetic quiver we have found in the previous section for a balanced

quiver of type A2.

In figure 8.3, we have shown the subweb decomposition as well as the magnetic quiver. In

particular, we assumed that ∆3 < ∆2 < ∆1 for illustrative purposes, but the same pattern is true for

any other arrangement with the modification that the purple, yellow, and green nodes would change

places accordingly. The edge number between these nodes will always be of the form ∆larger−∆smaller.

The balanced quiver from section 7.1 manifests itself in this picture as ∆1 = ∆2 = ∆3. This

evidently reproduces the result from the previous section, as the purple, yellow, and green nodes now

connect to the node with label k1 + 2∆3 and there are no edges between them.

Lastly, we can consider the case when, say, ∆2 = 0 or k2 = k3. This is shown in figure 8.4.

The orange node now connects immediately to the node with label k1, and as it still crosses the
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8. The finite coupling case of arbitrary quivers of type A2
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Figure 8.3: The case of k1 < k2 < k3 < k4: (a) brane system and (b) magnetic quiver.

green brane, also maintains its connection with it. But as the orange and purple lines do not cross

anymore, there will not be any edges between these nodes. With these patterns in hand, one could

now immediately write down the 8 separate cases.

(a)
*

&

* * ... D

Al
=3 jty... "A...I k, kitAs

* * &

Al
(b)

-
--
M · ·

I 4, k+ / KitAy KitAs I

-- ------
k, (+1) A3(+1) ArA3(+8) kitAz(-1)

Figure 8.4: The case of k1 < k2 = k3 < k4: (a) brane system and (b) magnetic quiver.
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8.3. The case k1 < k2 < k3 > k4

8.3 The case k1 < k2 < k3 > k4

The situation, unfortunately, quickly escalates in complexity. In figure 8.5, we can see that for the

case of k1 < k2 < k3 > k4, we get different decompositions based on whether

k1 −∆3

≥ 0

< 0
. (8.3)

If k1 −∆3 < 0, then the purple brane has to combine and form a subweb with either the orange or

green subwebs. Adding to our misery, this means that again we have various new cases based on the

values of ∆2 −∆3 and ∆1 −∆3. We will not investigate this case any further.

The magnetic quiver for the brane web in figure 8.5 (a) is shown in figure 8.6. Where now the

edges between the nodes associated with the vertical branes are of the form ∆i + ∆j rather than

∆i −∆j. The structure of the bottom linear part of the quiver also changes.

(a) ki-Azz0 *
A

&

ki-A3 k++13 1, Az

.............
·.....--. A

I A3 ki-Az+ Az Ki-A3+ A2 I

* A *

(b) ki-A30
& & Aust * * vi-A3h&

- -
--- R * ... and --- * ...

* & & * * &

Figure 8.5: (a) Brane web for the case of k1 −∆3 ≥ 0. (b) Brane web for the case of k1 −∆3 < 0. The
latter quickly deteriorates into a cascade of different cases.

As+ Al

--I
↑ As+ Az-

M M

I kiAz K:Az KiAztAz KiAstA
--------
k.-Ay(+1) Ay(+0) A (t) 1A2(+O) kiAz+Az(-1)

Figure 8.6: Magnetic quiver for the case of k1 −∆3 ≥ 0.
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9. Aside: A computational tool for

magnetic quivers

In the next chapter, we want to analyse theories of type A2, whose toric diagram is convex, at

infinite coupling. While the convexity condition does simplify the analysis, we are still dealing with

6 variables: 2 flavour nodes, 2 gauge nodes, and 2 Chern-Simons levels. To make sense of all these

different possibilities which result in different magnetic quivers, we have developed a Python library1.

Given a certain brane web, it automatically finds the possible maximal subweb decompositions

respecting both charge conservation and the S-rule. Once the decompositions have been found, it

computes the corresponding magnetic quiver. Optionally, it can also compute the Hasse diagram

of the magnetic quiver via quiver subtraction, though the functionality of this is more limited as

it does not deal with decorations. Other algorithms using fission and decay may be better suited

for this use case, see [51]. Yet, our algorithm immediately shows transitions, dimensions and the

quivers corresponding to different nodes in the Hasse diagram, something which the fission and decay

algorithm does not do.

9.1 Brane web to magnetic quiver

We will very briefly outline how the algorithm works. The brane webs are stored as graphs, where we

broadly have three types of objects: edges corresponding to 5-branes, nodes corresponding to either

junctions of 5-branes or individual 7-branes. The number of allowed junctions is currently limited to

one, which is the case of all coupling strengths being infinite.

Once a brane web has been initialised, the following steps are executed to find the magnetic

quiver:

(i) Find the possible subwebs over the junction and between the first set of 7-branes using charge

conservation only. All subwebs, which are the combination of two or more other subwebs, are

also removed, making our subwebs minimal and thus the decompositions maximal.

(ii) Identify the subwebs that violate the S-rule and, if possible, extend them across 7-branes such

that the number of 5-branes ending on any 7-branes is not more than the NS5 charge. If this

is not possible, we disregard the subweb.

1The complete source code is available at: github.com/ccmfb/magnetic quivers
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9.1. Brane web to magnetic quiver

(iii) Subtract our subwebs from the initial brane web in such a way as to find decompositions.

(iv) Read off magnetic quiver node content from decompositions.

(v) Find edge number between nodes/subwebs by spatially offsetting one subweb and calculat-

ing the intersection number, plus additional 7-brane contributions. This results in the full

magnetic quiver.

Let us slightly expand on some of the points. Consider, for example, the brane web in figure

9.1, step (i) would identify the blue and red subwebs. The combination of both of them is not a

minimal subweb and thus would be removed by the algorithm. Also, the red subweb satisfies the

S-rule, whereas the blue one does not. To remedy this point, step (ii) checks if there are sufficient

5-branes on the other side of the 7-brane on which the 2 blue 5-branes end. In this case, the blue

subweb can be extended to include an additional 5-brane, see figure 9.2. A slightly technical point

here is that when the NS5 charge is computed for any 5-brane between junction and 7-brane, we

first find the SL(2,Z) transformation that turns the (p, q) 5-brane into a (1, 0) 5-brane. And after

applying this transformation to the whole brane web, we can calculate the NS5 charge for all possible

branes, not just ones which are already D5 branes. While step (iii) might seem trivial here, if we

have multiple vertical branes, there can be various different ways to match up subwebs, and the

algorithm systematically investigates the possibilities by subtracting the found subwebs. The steps

(iv) and (v) find the magnetic quiver.

junction
· 12-1/2

·

↓
Figure 9.1: Some arbitrary brane web. The blue and red subwebs are the ones found across the junction
in step (i).

· (2-1)
2 I

& · O
I I

·
(0,1)

Figure 9.2: Some arbitrary brane web. The blue and red subwebs are the ones found after the extension
across the 7-brane in step (ii).
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9. Aside: A computational tool for magnetic quivers

9.2 Magnetic quiver to Hasse diagram

The step from magnetic quiver to Hasse diagram is a straightforward implementation of the existing

algorithm in [3]. Again, we store quivers as graphs. Once a quiver is inputted, we can calculate

the dimension of its Coulomb branch and thus load a set of minimal transitions with dimension less

than or equal to the dimension of the whole magnetic quiver. Then we can subtract the minimal

transitions to determine the Hasse diagram.

There is some added functionality in our method over the decay and fission algorithm. We are

able to not only display the exact transition between points in the Hasse diagram, but if you hover

over any node, it will also show the corresponding magnetic quiver, see figure 9.3 and 9.4.

Figure 9.3: Complete Hasse diagram for balanced SU(6)× SU(8) theory.

74



9.2. Magnetic quiver to Hasse diagram

Figure 9.4: Zoomed in view of Hasse diagram for balanced SU(6) × SU(8) theory. Transitions and
dimensions are shown, as well as the magnetic quiver corresponding to the hovered-over node.
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10. The infinite coupling case for toric

quivers of type A2

Previously, we analysed an arbitrary quiver of type A2 at finite coupling. This was possible because

we could always avoid brane crossings by simply adjusting the length of the heavy branes. At infinite

coupling, this is not quite as easy. To avoid having to consider Hanany-Witten transitions, we need

to be more restrictive in the types of quivers we consider. Hence, we will only consider those quivers

whose toric diagram is convex.

10.1 Example for k2, k3 ≤ 4

In figure 10.1, we can see a convex toric diagram, where we may, for simplicity, choose that there is

a horizontal line at the bottom between the two vertical lines corresponding to the gauge nodes. For

this to be convex, we require

p ≥ 0 and k2 − (k1 + p) ≥ k3 − k2 ,

q ≥ 0 and (k4 + q)− k3 ≤ k3 − k2 .
(10.1)

·

ak3

Figure 10.1: Toric diagram for some general convex A2 theory.

The main idea of this chapter is that we can use the Python library discussed in chapter 9 to
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10.1. Example for k2, k3 ≤ 4

generate any quiver of this form. The bounding case in (10.2) warrants a different brane system

setup in the Python script, and to be able to automate the process of generating many magnetic

quivers, we thus restrict the values we will consider a little more to

p > 0 and k2 − (k1 + p) > k3 − k2 ,

q > 0 and (k4 + q)− k3 < k3 − k2 .
(10.2)

It should be emphasised that we only do this for the automatic generation of many cases; the Python

code itself works for any convex brane web at infinite coupling.

We proceed by generating all possible brane webs for k2, k3 ≤ 4 that satisfy the conditions in

(10.2), and list them by their magnetic quiver in table 10.1.
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10. The infinite coupling case for toric quivers of type A2

Magnetic Quiver Electric theories defined by k2 − k3 − k1 − k2 − p− q

1 1

1

2

2-2-0-0-1-1, 3-3-0-0-1-2, 3-3-0-0-2-1, 3-3-0-1-1-1, 3-3-0-1-2-1,

3-3-1-0-1-1, 3-3-1-0-1-2, 3-3-1-1-1-1, 3-3-1-1-1-1, 3-4-0-1-1-2,

3-4-0-2-1-1, 3-4-0-2-1-2, 3-4-0-3-1-1, 4-4-0-0-1-3, 4-4-0-0-2-2,

4-4-0-0-3-1, 4-4-0-1-1-2, 4-4-0-1-2-1, 4-4-0-1-2-2, 4-4-0-1-3-1,

4-4-0-2-1-1, 4-4-0-2-1-1, 4-4-0-2-3-1, 4-4-0-2-3-1, 4-4-1-0-1-2,

4-4-1-0-1-3, 4-4-1-0-2-1, 4-4-1-0-2-2, 4-4-1-1-1-1, 4-4-1-1-1-1,

4-4-1-1-1-2, 4-4-1-1-2-1, 4-4-1-1-2-2, 4-4-1-1-2-2, 4-4-1-2-1-1,

4-4-1-2-2-1, 4-4-2-0-1-1, 4-4-2-0-1-1, 4-4-2-0-1-3, 4-4-2-0-1-3,

4-4-2-1-1-1, 4-4-2-1-1-2, 4-4-2-2-1-1

1 13
3-3-0-0-1-1, 3-3-0-0-2-2, 3-3-0-1-1-1, 3-3-0-1-2-1, 3-3-1-0-1-1,

3-3-1-0-1-2, 3-4-0-0-1-1, 3-4-0-0-1-2, 3-4-0-0-1-3, 3-4-0-0-1-4,

3-4-0-1-1-1, 3-4-0-1-1-1, 3-4-0-1-1-1, 3-4-0-1-1-3, 3-4-0-1-1-3,

3-4-0-1-1-3, 3-4-0-2-1-1, 3-4-0-2-1-2, 4-4-0-0-1-1, 4-4-0-0-1-2,

4-4-0-0-2-1, 4-4-0-0-2-3, 4-4-0-0-3-2, 4-4-0-0-3-3, 4-4-0-1-1-1,

4-4-0-1-1-1, 4-4-0-1-1-2, 4-4-0-1-3-1, 4-4-0-1-3-2, 4-4-0-1-3-2,

4-4-0-2-2-1, 4-4-0-2-2-1, 4-4-1-0-1-1, 4-4-1-0-1-1, 4-4-1-0-1-3,

4-4-1-0-2-1, 4-4-1-0-2-3, 4-4-1-0-2-3, 4-4-1-1-1-1, 4-4-1-1-1-1,

4-4-1-1-2-2, 4-4-1-1-2-2, 4-4-2-0-1-2, 4-4-2-0-1-2

1 1

1

1

2

3-3-1-1-1-1, 4-4-1-1-1-2, 4-4-1-1-2-1

1 1

11

2

3 3-4-0-2-1-1, 3-4-0-2-1-2, 4-4-0-2-2-1, 4-4-1-2-1-1, 4-4-1-2-2-1,

4-4-2-0-1-2

1 1

11
1

2

2

2

3-4-0-3-1-1, 3-4-0-3-1-1

Continued on next page
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10.1. Example for k2, k3 ≤ 4

Magnetic Quiver Electric theories defined by k2 − k3 − k1 − k2 − p− q

1 1

1

2

1

2

3-4-0-3-1-1

1 1

11

2

4 4-4-1-2-1-1, 4-4-1-2-2-1, 4-4-2-1-1-1, 4-4-2-1-1-2

1 1

11

1

3

2
4-4-1-2-1-1, 4-4-1-2-2-1, 4-4-2-1-1-1, 4-4-2-1-1-2

1 1

11

2

32
4-4-2-1-1-1, 4-4-2-1-1-2, 4-4-2-2-1-1, 4-4-2-2-1-1

1 1 1

1

1

1

2 2

2

4-4-2-2-1-1, 4-4-2-2-1-1

1 2 1

1

1

12

4-4-2-2-1-1

Table 10.1: Magnetic quivers and their corresponding electric theories for k2, k3 ≤ 4. If an electric theory
occurs for multiple magnetic quivers, then its Higgs branch splits into multiple branches, each represented
by a corresponding magnetic quiver.
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11. Conclusion

This dissertation aimed to provide a comprehensive introduction to theories with 8 supercharges and

to extend the analysis of magnetic quivers to new families of 5d N = 1 theories. By applying the

various tools, such as brane webs and toric diagrams, we successfully identified previously unknown

patterns and structures.

Summary and interpretation Our first contribution is the identification of a pattern for balanced

quivers of type An with flavour nodes restricted to the outside gauge nodes. We demonstrated that the

coupling phases of these theories, corresponding to arrangements of finite or infinite gauge couplings,

are elegantly classified by integer partitions of n + 1. This means that once a coupling structure is

known, it can be mapped to a partition, which in turn defines a magnetic quiver as well as the global

symmetry. This connection between integer partitions and magnetic quivers seems to suggest that,

at least in part, one can find patterns for large families of electric quivers.

Secondly, our analysis of arbitrary quivers of type A2 at finite coupling revealed significant com-

plexity driven by the relative ranks of the flavour and gauge nodes. We showed that the structure

of the magnetic quiver is highly sensitive to the signs of the differences in ∆i = ki+1 − ki. While for

some configuration k1 ≤ k2 ≤ k3 ≤ k4, a reasonably simple magnetic quiver classification was found.

For cases such as k1 < k2 < k3 > k4, the formation of subwebs becomes much more dependent on

various conditions.

Finally, to tackle the problem of quivers of type A2, whose toric diagram is convex, at infinite

coupling, we developed a Python library to automate the computation of magnetic quivers from brane

webs. This computational tool is a completely new approach to tackling the problem of identifying

magnetic quivers for families of theories. This library allowed us to generate an extensive catalogue

of electric theories and their corresponding magnetic quivers, an excerpt of which was provided in

this dissertation.

Limitations and future directions Despite the advances made, there are certain limitations, as

well as future directions which could be pursued further:

(i) The clear pattern found for a specific fixed balance suggests that exploring other fixed balan-

cing schemes could reveal similar structures.

(ii) Our analysis of A2 quivers at finite coupling was limited by their complexity, and as such, we
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only explored a subset of possible cases. To further investigate the remaining cases, one could

expand the Python library to deal with multiple junctions. This would allow for a systematic

exploration.

(iii) The catalogue of magnetic quivers generated for A2 quiver theories at infinite coupling rep-

resents a rich dataset. A more detailed study of this data might reveal some patterns or

classifications which are not immediately obvious.
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