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On Numerical Methods for the KdV Equation and
Soliton Dynamics

Carl Bouchard

Abstract—We investigate explicit finite difference
schemes and pseudospectral methods to numerically solve
the Korteweg-de Vries (KdV) equation, as well as gener-
alise a finite difference scheme based on the Hamiltonian
formalism to higher orders which we show to be superior
to a straightforward discretisation. In addition, we explore
the dynamics of the soliton solutions including collisions,
wave decomposition and shock waves. We manage to
validate many previously found results.

I. INTRODUCTION

Solitons have a rather peculiar origin story. In
1834, John Scott Russell was observing a wave
travelling down Edinburgh’s Union canal, and he
was so impressed by the wave’s shape preserving
properties that he followed it for many miles (Its
solitary shape and particle-like behaviour are the
reason why we now usually refer to it as a soliton).
He later would describe this day as the happiest
of his life, and would conduct experiments trying
to replicate the wave. He was able to empirically
deduce important features of the wave, such as that
the speed is correlated to the amplitude and that
any initial profile will decompose into solitons [1].
Unfortunately, his enthusiasm was not shared by his
contemporaries, with both Stokes and Airy doubting
the existence of such as wave.

This might also be the reason why it took until
1877 for Boussinesq to discover an equation with
soliton solutions [2]. The equation was later redis-
covered by Korteweg and de Vries, who also found
its simplest solution [3]]. The form of the Korteweg-
de Vries (KdV) equation that we will be interested
in is

Ut + Uy + Ugzy = 07 (1)
and its solution is given by
u(z,t) = 120’ sech® (a(z — 40’t)) . (2)

It was again not until some 70 years later that new
progress was made. This time Zabusky and Kruskal

were able to show that an initial cosine profile
decomposes into solitons over time and that the
KdV equation is the continuum limit of the Fermi-
Pasta-Ulam-Tsingou problem (FPUT problem) [4].
The FPUT problem concerns periodic behaviours
in complex systems, such as a discrete weakly-
nonlinear string. More progress was made by Gard-
ner, Greene, Kruskal and Miura who invented the
method of inverse scattering transformations (IST)
to solve the KdV equation analytically [S]]. The IST
method has since been applied to many other partial
differential equations.

Nowadays, solitons and the KdV equation find
application in many different fields, such as in fluid
dynamics, plasmas, gauge theories and many more
(61, [71.

This paper is structured as follows: Section |II] dis-
cusses some relevant properties of the KdV equation
and its solutions. Section gives an overview of
the numerical methods used and compares them.
Then, in Section we are investigating some
dynamics of the solitons, including collisions, wave
decomposition and shock waves. Finally, Section
concludes and summarises our findings.

II. PROPERTIES OF THE KDV EQUATION

Before looking at the KdV equation in more
detail, it is instructive to to look at its components
separately to better understand the behaviour of the
whole system. We first consider equation (1)) without
dispersive terms,

3)

The resulting solution changes shape as the wave
propagates and eventually becomes multi-valued.
On the other hand, we can consider equation ()
without nonlinear terms,

Uy + uu, = 0.

)

Here the solution exhibits different phase speeds for
different wave numbers, v, = w/k = 1 —k?, and so

U + Upge = 0.
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disperses over time. Miraculously, combining both
terms leads to their effects cancelling and results in
a soliton solution which travels without disturbances
to its shape. We will further investigate the effects
that parts of the KdV equation have in Section [[V]
where we model variations to the KdV equation,
such as a combination of nonlinear and dissipative
terms (the Burgers’ equation).

Another curious feature of the KdV equation is
that it has infinitely many conservation laws. In
general, one can write a conservation law as

or o0X
ot or
where 7" and X can be functions of x, ¢, uy, Uy, -...
By integrating this with respect to x, we have
o0
4 Tdr=-[X|"_=0, (6)
dt J_ o
where we have assumed that X approaches a con-
stant value as |z| — oo. By rewriting the KdV
equation in the form of equation (3), one can
easily verify that we have the following conserved
quantities:

0, (&)

11:/ udzr, 7
L :/ 2 dr, ®)
<14 1 9

These are called mass, momentum and energy, re-
spectively. A more complete discussion of conser-
vation laws can be found in [8]]. Particular attention
should be drawn to the energy, as it is a Hamiltonian
of the KdV equation (hence the name energy). And
we may write the KdV equation as

0 0H
Uy = —%%, (10)
where 5H ]
on _ 12
5 2u + Ugy (11)

is the variational derivative of the Hamiltonian den-
sity, H, i.e. the integrand of equation (9).

We also note a few basic properties of the soliton
solution that will become relevant in Section
when we investigate the dynamics. We can read off
the amplitude and the speed of the soliton form
equation (2), they are given by h = 12a* and
v = 4a?, respectively. So combining them we get a

relation between height and speed, v = %‘

III. NUMERICAL METHODS

In this section, we will discuss two different
types methods for numerically solving the KdV
equation. In particular, an explicit finite difference
scheme, using a straightforward discretisation and
one based on the Hamiltonian formalism, as well
as a pseudospectral method. We will compare their
results to the exact solution as well as investigate
how well they conserve the conservation laws in
section

A. Explicit Finite Difference Schemes

The idea of finite difference schemes (FDS) is
to approximate derivatives at some point, say z;,
by using other points surrounding it, such as x;;.
We want to discretise a function u(x,t) into an
equispaced rectangular grid and introduce the fol-
lowing notation u(z;, t,) = u}" where z; = iAx and
t, = nAt with i, n € Z and Az, At referring to the
spatial and time separation between two points. For
example, we can write the nearest-neighbours of «'
in space and time as u ;,u!" ,ul"" and u}"". We
also want to rewrite the KdV equation as

ou
ot
where f = —uu, — Uggs.

Typically one may then apply the Euler method
for the time step, i.e. the left-hand side of equation
(T2)), but here this does not work since the amplifi-
cation factor is ¢ = 1 — 2a/tanh (a(z — 4a’t)) At
which is not less or equal to 1 for relevant con-
figurations of x, o and t. Instead we will use a
Runge-Kutta method of 2nd-order (RK2) and of 4th-
order (RK4), which are more stable and accurate.
They approximate the next value in time by first
estimating the slope of wu(z,?) a number of times
inside the interval to the next value. The order of
the method refers to the number of slope estimates
per time step and it also gives the global error of the
method. For example, RK4 is of order O ((At)?).
It is hence clear that higher accuracy comes at the
price of computation time. One can also make a
couple basic experimental observations about A,
At and « in regards to stability: The higher « is,
the larger we can make At but the smaller Ax has
to be, and vice versa. This indicates that A¢ and
Ax are inversely related. In practice, one usually
determines an appropriate Ax such that a particular

= J (U g, Ugaz) = f, (12)
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TABLE I: Relevant weights for central difference schemes, where we have omitted a factor of

1 1

Az’ (Bz)? and ﬁ for the

first, second and third order derivatives, respectively. An extended version can be found in [9].

H Order of Derivative Order of Accuracy Ui—4 Ui—3 U;—2 Ui—1 U; Ui+1 Ui42 Ui+3 Uit4 H
1 2 -1/2 0 172
4 1/12 -2/3 0 2/3 -1/12
6 -1/60 3/20 -3/4 0 3/4 -3/20 1/60
2 2 1 -2 1
4 -1/12 4/3 -5/2 4/3 -1/12
6 1/90 -3/20 32 -49/18 3/2 -3/20 1/90
3 2 -172 1 0 -1 172
4 1/8 -1 13/8 0 -13/8 1 -1/8
6 -7/240  3/10  -169/120  61/30 0 -61/30  169/120  -3/10  7/240

spatial resolution is achieved (this is often set by
the problem at hand), and then tries to optimise the
time step appropriately.

To discretise f we can consult [9] to find the
relevant central difference schemes for u, and ;.
Here we consider the schemes of orders 2,4 and 6,
which we have summarised in table [l These can be
combined appropriately to give discretisations of f.
So, for example, the 2nd-order discretisation would
be

1
fi= __2Axui (Wip1 — Ui—1)
1
— m (2ui—1 — 2Uip1 + Uipo — Ui—2) . (13)

As we will see later on, these methods already
give very accurate results, yet they can be improved
to not only be more accurate but also conserve the
conservation laws better by using the Hamiltonian
form of the KdV equation (10). We follow the
principles in [10], and generalise the method to
higher orders. To derive the Hamiltonian discreti-
sation, we simply need to apply the relevant central
difference scheme from the ones we have already
met in table [l to the operator a% in equation (1I0)
and u,, in equation ([l 1]), and hence arrive at a new
discretisation of f. Our 2nd-order discretisation in
equation now becomes

1 2

fi= _m(ui-i-l —ui )
1
- m(uiw — Qi1 + 2uim1 — Ui—) . (14)

At first sight this may appear counter-intuitive as we
are loosing the benefit of knowing u; and seemingly
are just replacing it with an average over its neigh-
bouring points. But, as it turns, out the Hamiltonian
scheme is performing significantly better.

B. Pseudospectral Method

Fornberg and Whitham [[11]] suggested a method
where u(x, t) is transformed into Fourier-space via a
discrete fast Fourier transform (DFFT) with respect
to x. We define the transform and its inverse as

N-1
Flul =u = Z u(mAy, t)e 2N (15)
m=0
.
Fa] = v a(nAk, )™~ | (16)
n=0

where N is the number of x points. We have
also, for convenience, mapped our x domain to
y € [0, 27]. Now we can write the spatial derivatives

as
an
oxn
To improve the performance of the DFFT we may

also choose the number of points, NV, to be a power
of two. We arrive at a final expression

u=F 1 [(2mik)" Flu]] . (17)

f= _%T]:_l[k:}"[uQH +in’ FOURFlu]]. - (18)

Having discretised f we can again use RK2 or RK4
for the time step.

C. Comparison

To test how well different methods perform, we
setup up an initial soliton wave with o = 4 and
o = 2 and we want our methods to propagate
the soliton to x = 8 with the lowest possible error
and the least amount of steps i.e. in the shortest
time. There are multiple things to consider when
defining the error, we can on the one hand look
at the absolute difference between the numerical
solution and the exact solution from equation (2)),
or we can look at how well different quantities are
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Fig. 1: Comparison of different methods, where we used the following shortcuts for different methods: ’FDS’ - Finite Difference
Scheme (dark blue - RK4, dark green - RK2), "THFDS’ - Hamiltonian Finite Difference Scheme (light blue - RK4, light
green - RK2), 'PSM’ - Pseudospectral Method (red). For FDS and HFDS, the bracket refers to the order of (Runge-Kutta,
Discretisation). For PSM, it refers to the order of the Runge-Kutta method used only. (a) The root-mean-square error against
time. The PSM (4) performs best, followed closely by HFDS (4,6). (b) Change in momentum, as fraction of initial momentum.
Similar result to RMSE, but trends are flatter. (c) Change in energy, as a fraction of initial energy.

conserved. Here, we will be looking at the root-
mean-square error to the exact solution and the
change in momentum/energy as a fraction of the
initial momentum/energy over time, see Fig. [I]

We find that the PSM-4 (Pseudospectral Method
using RK4) performs best over all three categories,
with the HFDS-46 (Hamiltonian Finite Difference
Scheme using RK4 and a 6th order discretisation)
nearly matching it. But the PSM-4 method used a
step size about 3-4 times smaller due to stabiltiy
reasons, which therefore naturally makes the error
smaller.

In general, RK2 methods used 4-8 times smaller
At steps and still became unstable sooner in time.
But for the short times that they were stable, they
managed to replicate the result of the corresponding
RK4 method very well.

The Hamiltonian schemes consistently performed
about 1 order of magnitude better than the non-
Hamiltonian FDSs. Demonstrating the significant
impact different discretisations can have.

Time-wise, the FDSs (RK4 only) were ahead.
Due to being more stable, they managed a larger
At and hence they only took between 5-10s to run,
whereas the PSM-4 with step size 3-4 times smaller
needed just over 40s.

Another interesting feature of the different meth-

ods (FDS and PSM) is the way the error develops. In
Fig.[2] we can see that the FDS develops the largest
deviations to the exact solution in regions where
the soliton is, whereas the PSM seems to distribute
the error throughout the domain. This is in agree-
ment with what one might expect, as the FDS is
approximating derivatives, it should be making more
mistakes in areas where the derivatives change. The
PSM, on the other hand, only introduces errors
from transforming in and out of k-space, and hence
develops the errors in the whole domain.

IV. SOLITON DYNAMICS

As established in Section [[I, solitons of differ-
ent heights have different speeds. So naturally one
might be curious as to what happens when a faster
soltion catches up to another and they collide. Since
the KdV equaion is nonlinear, we can already rule
out that the two solitons superpose. If we give our
numerical methods an initial profile of two solitons
with different a values and propagate them through
time, we find the following: During the collision, the
larger soliton’s height decreases whereas the smaller
soliton’s height increases. This process continues
until the smaller one grows to the size of the larger
and the larger shrinks to the size of the smaller. The
total effect being that the large soliton overtook the



COMPUTATIONAL PHYSICS PROJECT REPORT

(a) (b)

AU RN

7
Zz
=
Z
7
Z

N\

‘\\ \
N
NN

Space, x Space, x

Fig. 2: Absolute difference between exact solution and nu-
merical solution over space and time. (a) PSM-4: error is
distributed throughout space. (b) FDS-46: error develops in
region of soliton.

smaller one, with both solitons shifting a little bit
in their x position, see Fig. 3] From an analytic
solution for 2 solitons, one can derive the shifts to

be
1
Az, = —In (M) >0, (19)
(03] a1 — (g
1 _
Ay = —In (M) <0, (0
(6%)) aq + o

where a; > as. The analytical value for the shift
agrees with the simulation.

1 Soliton Solution
t=022 T 1 Soliton Solution

I 2 Soliton Solution
t=0.19

t=0.16
t=0.13
t=10.10
t=10.06
t=0.03
t=0.00

10

Fig. 3: Collision of two solitons. Blue and green profiles show
how a single soliton would propagate, red shows how the
combination of both propagates.

Initially observed by Zabusky and Kruskal [4],
a sine wave shape will decompose into separate
solitons at about the time that the nonlinear equation
without the dispersion term (3]) would “tumble over”
and become multi-valued. They also showed that
the heights of the train of solitons follows a linear
relationship, we replicate this result in Fig. [] for a
sine wave shape, but also show that the same is true
for other shapes, such as a triangular shape.

(a)

t=0.04

t=0.03

t=0.02

t=0.01

t=0.00

0 5 10

Space, x

5
Space, x

Fig. 4: Different initial wave forms decomposing into solitons.
(a) Sine wave. (b) Triangular wave.

To investigate the effects that different parts of
the KdV equations have, we will model
U + Uy = VUgy , (21)
where v is some parameter. Equation (21)) is usually
known as the viscous Burgers’ equation, and if
v = 0 it i1s called the inviscid Burgers’ equation.
They find application in fluid dynamics, nonlinear
acoustics and traffic flow. We know from the discus-
sion on the KdV equation in Section [[I] that the in-
viscid equation will eventually become multi-valued
since it is not linear. A possible way to circumvent
this would be to introduce a discontinuity in such
a way that it preserves the area. Strictly speaking,
this shock wave is not a solution of the inviscid
Burgers’ equation, but it is an allowed solution of
an integral conservation equation from which the
inviscid Burgers’ equation could have been derived
from. In Fig. [5] we consider the inviscid equation up
to the point where it breaks down. We also see that
the viscous Burgers’ equation escapes becoming
multi-valued by diffusing away.
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Fig. 5: Comparison between inviscid and viscous Burgers’
equation. The inviscid equation becomes multivalued and
unstable, whereas the viscous one diffuses and escapes any
instabilities.

V. CONCLUSION

We studied explicit finite difference schemes of
orders O((Az)?), O((Az)*) and O((Ax)°) together
with Runge-Kutta 2 and 4 methods, both using a
straightforward discretisation as well as a discreti-
sation based on the Hamiltonian formalism. We
also investigated a pseudospectral method, again
using Runge-Kutta 2 and 4. We conclude that the
Hamiltonian scheme for the O((Az)®) discretisation
is overall the best method, it approximately matches
the performance of the pseudospectral method with
RK4, but is more stable and quicker. In general, we
found the Hamiltonian discretisations to be about
one order of magnitude more accurate than its
counterparts.

Additionally, we looked at various dynamical
properties of solitons. We found that the shift in
the x position of two solitons after a collision that
can be derived analytically agrees with our simula-
tions. We also replicated results from Zabusky and
Kruskal [4] that showed that an intial sine wave
profile will break up into a train of solitons, we
additionally simulated this for a triangular profile.
Finally, we looked at two variations of the KdV
equation: without dispersion term and replacing the
dispersion term with a diffusive term. These gave
inside into how shock waves form and how diffusion
stops the wave from becoming multi-valued.
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