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Abstract

These notes are based on the string theory lecture course by Prof. Amihay Hanany,

taught at Imperial College London in 2025. While they broadly follow the structure of the

course, at times I decided to reorganise and/or add additional material. There are very

likely many mistakes throughout this work, from typos to factually wrong statements.
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1. Introduction and Overview

1 Introduction and Overview

• perspectives

• why susy
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2. Aside: Representation Theory

2 Aside: Representation Theory

We will briefly review some of the relevant aspects of representation theory. It is assumed that

the reader is familiar with how highest weights work and that they correspond to different

representations of an algebra.

2.1 Basic tools

Let us begin by introducing the Dynkin labels. Recall that a highest weight µ can be written

as a linear combination of fundamental weights λ

µ =
r∑

i=1

niλi , (1)

where r is the rank of the algebra and ni ∈ Z+. The Dynkin labels are simply the coefficients

ni written as a vector

[n1n2 · · ·nr] . (2)

We are often interested in performing various operations on different representations. Let

us start with the tensor product, and suppose we have the representations [10] and [01] of

A2. There are now multiple ways to tackle the tensor product, either one does the actual

multiplication of weights (or uses characters to encode them), or one makes use of general

rules1:

• the dimensions have to (obviously) be the same on both sides of the equation,

• the charge under the centre of the group is conserved,

• in general [n1...nr][m1...mr] = [(n1 +m1), (n2 +m2), ..., (nr +mr)] + ... .

Let us begin by multiplying the weights, as schematically shown in figure 1. This method is

great for 2-dimensional root systems, but gets more difficult to visualise in higher dimensions.

In terms of characters, we note that

[10] = x+
y

x
+

1

y
(3)

[01] = y +
x

y
+

1

x
(4)

[11] = xy +
x2

y
+
x

y2
+

1

xy
+

y

x2
+
y2

x
+ 2 , (5)

[00] = 1 , (6)

1This is not an exhaustive list to any extent. For example, one can also use Young tableaux for tensor
products of SU(n) representations.
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2. Aside: Representation Theory

Figure 1: Weight computation for [10][[01] = [11] + [00].

and the tensor product is simply the product of the characters

[10][01] = (x+
y

x
+

1

y
)(y +

x

y
+

1

x
) (7)

= xy +
x2

y
+ 1 +

y2

x
+ 1 +

y

x2
+ 1 +

x

y2
+

1

xy
(8)

= [11] + [00] . (9)

Lastly, we can use the rules above from which it immediately follows that [10][01] = [11]+ [00].

We mentioned that the charge under the centre of the groups is conserved. For the groups

we are dealing with, we have

SO(2n+ 1) : Z2 (10)

SO(0 mod 4) : Z2 × Z2 (11)

SO(2 mod 4) : Z4 , (12)

technically these are not the correct centres for SO(n) groups but rather of the Spin(n) groups.

Symmetric products

Other important operations are symmetric and anti-symmetric products. We will begin

here with the symmetric product. Suppose we have n variables xi with i = 1, . . . , n. We can

combine them to form a symmetric bilinear form

aij = xixj , (13)

3



2. Aside: Representation Theory

this will then have n+ 1

2

 =
n(n+ 1)

2
(14)

independent elements, corresponding to the indices i ≤ j. We can generalise this to a fully

symmetric rank-k tensor

ai1...ik = xi1 . . . xik . (15)

The indices corresponding to independent elements are then i1 ≤ i2 ≤ · · · ≤ ik, and as such

the number of elements is n+ k − 1

k

 . (16)

We can construct a generating series for symmetric products. Consider the product

n∏
i=1

1

1− xi
= (1 + x1 + x21 + . . . ) . . . (1 + xn + x2n + . . . ) (17)

= 1 +
∑
i

xi +
∑
i≤j

xixj +
∑
i≤j≤k

xixjxk + . . . , (18)

where we have grouped together all monomials of the same order. If we now set all xi = x, we

recover the number of independent elements of a fully symmetric rank-k tensor

1

(1− x)n
= 1 + nx+

n+ 1

2

x2 + · · ·+

n+ k − 1

k

xk + · · · . (19)

As a concrete example, let us look at symmetric products of the [1] representation of SU(2).

The character of this representation is x+ 1/x, and we can compute symmetric products as

1

1− xt

1

1− t/x
= 1 + (x+

1

x
)t+ (x2 + 1 +

1

x2
)t2 + · · ·

=
∞∑
n=0

Symn[1]tn

=
∞∑
n=0

[n]tn ,

(20)

where the second line follows by construction and the third line comes from recognising the

4



2. Aside: Representation Theory

characters of SU(2). Similarly, we could compute symmetric products of [2] = x2 + 1 + x−2

1

1− x2t

1

1− t

1

1− t/x2
= (1 + x2t+ x4t2 + · · · )(1 + t+ t2 + . . . )(1 + x−2t+ x−4t2 + · · · )

= 1 + (x2 + 1 + x−2)t+ (x4 + x2 + 1 + 1 + x−2 + x−4)t2 + · · ·

= 1 + [2]t+ ([4] + [0])t2 + · · · .

(21)

Aside: Plethystic exponential for symmetric products

We can be slightly more explicit and formal about how we calculate the symmetric products

by introducing the plethystic exponential. Consider the following

n∏
i=1

1

1− xi
= exp

(
log

( n∏
i=1

1

1− xi

))
= exp

(
−

n∑
i=1

log(1− xi)

)
= exp

( n∑
i=1

∞∑
k=1

xki
k

)
,

(22)

where, to get to the last line, we used the relation

log(1− xi) = −
∞∑
k=1

xki
k
, (23)

which can be derived from integrating 1/(1− xi). By now defining

f(xi) =
n∑

i=1

xki , (24)

we get our final expression for the plethystic exponential, where we have to restrict f(0) = 0,

PE[f(xi)] = exp

( ∞∑
k=1

f(xi)

k

)
. (25)

If we also include a counting fugacity into the argument of the plethystic exponential, we

get the formal expression of what we have already seen above with the characters

PE[f(xi)t] =
∞∑
k=0

Symk[f ] tk . (26)

Anti-symmetric product

We can follow a similar procedure to obtain the results for antisymmetric products; here, we will

simply state the final answers. The number of independent elements for a fully antisymmetric

5



2. Aside: Representation Theory

rank-k tensor is n
k

 , (27)

corresponding to the indices i1 < i2 < · · · < ik. The generating function thus becomes

n∏
i=1

(1− xi) = 1 +
∑
i

xi +
∑
i<j

xixj + · · ·

=
n∑

k=0

n
k

xk ,

(28)

where we have substituted xi = x in the last line. The plethystic exponential now takes the

form

PEF [f(xi)] = exp

( ∞∑
k=1

(−1)k+1f(xi)

k

)
, (29)

and with a counting fugacity

PEF [f(xi)t] =
n∑

k=0

Λk[f ] tk . (30)

2.2 SO(n) representations

A useful way to think about the representations is in terms of Dynkin diagram nodes. The

fundamental weights are defined as the dual space to the fundamental roots as

λi(α
∨
j ) = δij (31)

where α∨
i is the coroot. Since each node in a Dynkin diagram corresponds to a root, it can also

be associated with a weight.

For SO(2n), the Lie algebra is Dn, and we have the diagram in figure 2. The names can be

understood by looking at the dimensions of representations. We may summarise all this as well

as the corresponding field in a table, see table 1. It is a valuable exercise to write down a similar

diagram and table for Bn. The dimensions of these representations can often be deduced in

some way, but if all methods fail, one can always go back to the Weyl dimensions formula, for

which we have computed explicit expression in the appendix A.

There are two relations which are very useful for calculating symmetric and antisymmetric

products of spinors of SO(n), they are

Sym2[0 · · · 01]Bn =
∑

k=n mod 4

Λk[10 · · · 0] , (32)

6



2. Aside: Representation Theory

Figure 2: Dynkin diagram for Dn with associated base representations labelled.

Dn with n ≥ 3 Dynkin Label Dimension Field

Scalar [0 · · · 0] 1 ϕ

Vector [10 · · · 0] 2n Aµ

Adjoint [010 · · · 0] n(2n− 1) Bµ1µ2

Λk[10 · · · 0] Λk[10 · · · 0]

2n

k

 Cµ1···µk

Spinor [0 · · · 10] 2n−1 ψα

Co-spinor [0 · · · 01] 2n−1 ψ̄α̇

Table 1: Basic representations of Dn. Here µi denotes spacetime indices and α denotes spinor indices.
Fields with multiple µ indices are antisymmetric.

and

Λ2[0 · · · 01]Bn =
∑

k=n+2 mod 4

Λk[10 · · · 0] . (33)

Both Bn and Dn? As well as a general relation for antisymmetric products of a sum

Λn(R1 +R2) =
n∑

k=0

(ΛnR1)
(
Λn−kR2

)
. (34)

2.3 Example: Supersymmetry algebra

The Lorentz symmetry in 11d is SO(1, 10), and thus, we already know that the spinor has

dimension 25 = 32 we can then write Qα with α = 1, ..., 32. The most general form of the

supersymmetry algebra {Qα, Qβ} can easily be calculated by taking the symmetric product of

the spinor representation because the anticommutator is invariant under the exchange of Qα

7



2. Aside: Representation Theory

and Qβ, we have

Sym2[00001] =
∑

n=1 mod 4

Λn[10000]

= (Λ1 + Λ5 + Λ2)[10000]

= [10000] + [00002] + [01000]

(35)

where we have used the fact that Λ9 = Λ2 in 11d.

This expression can then be translated back into the language of fields

{Qα, Qβ} = Γµ
αβPµ + Γµ1...µ5

αβ Zµ1...µ5 + Γµ1µ2

αβ Zµ1µ2 , (36)

where Pµ is the momentum, Zµ1...µn are the central charges and we define

Γµ1...µn

αβ = Γ[µ1
ατ1
...Γ

µn]
τnβ
ϵτ1τ2 ...ϵτn−1τn . (37)

8



3. Theories with 32 Supercharges

3 Theories with 32 Supercharges

3.1 11d supergravity

The theory of 11d supergravity is the low energy limit of M-theory, and as we will generally be

interested in low energy dynamics, we can focus on massless states in the theory. In 11d, we can

always boost to a frame where we have Pµ = (E,E, 0, ..., 0) with µ = 0, ..., 10. From this, we

can tell that the little group is SO(9). We have already seen that the spinor dimension in 11d

is 32, which dictates the minimum number of supercharges, and we will have 232/4 = 28 = 256

degrees of freedom.

The so-called gravity multiplet G11, which is the only multiplet possible in 11d, is given by

G11 = [2000]9
44︸ ︷︷ ︸

Graviton

+ [1001]9
128︸ ︷︷ ︸

Gravitino

+ [0010]9
84︸ ︷︷ ︸

3-Form

, (38)

where we have annotated the dimension and what type of particle the representations corre-

spond to. We can clearly see that the bosonic degrees of freedom match the fermionic degrees

of freedom, as is required for supersymmetry to be preserved.

3.2 Type IIA and type IIB theories

The way to get the type IIA multiplet in 10d is via dimensional reduction from the 11d su-

pergravity multiplet. The idea begin dimensional reduction is that if we have a vector in

d dimensions, this will turn into a vector and a scalar in (d − 1) dimensions. In terms of

representations, we have the following when going from 11d to 10d

[0000]9
1

→ [0000]8
1

[1000]9
9

→ [1000]8
8

+ [0000]8
1

[0001]9
16

→ [0001]8
8

+ [0010]8
8

,

(39)

where the SO(9) spinor representation decomposes into both spinors of the SO(8) representa-

tion. All other decompositions can be derived from this.

One finds that the 10d type IIA multiplet is

GIIA = [2000]8
35︸ ︷︷ ︸

Graviton

+ [0100]8
28︸ ︷︷ ︸

2-Form

+ [0000]8
1︸ ︷︷ ︸

Dilaton

+ [1001]8
56︸ ︷︷ ︸

Gravitino

+ [0010]8
8︸ ︷︷ ︸

Spinor

+ [1010]8
56︸ ︷︷ ︸

Co-Gravitino

+ [0001]8
8︸ ︷︷ ︸

Co-Spinor

+ [0011]8
56︸ ︷︷ ︸

3-Form

+ [1000]8
8︸ ︷︷ ︸

1-Form

.

(40)
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3. Theories with 32 Supercharges

We can note a few points about this. Firstly, the theory is non-chiral, meaning that it includes

spinors of both types. And very importantly, it can be factorised into

GIIA = ([1000]8 + [0001]8)([1000]8 + [0010]8) , (41)

which can be interpreted as left and right moving modes on a closed string.

Exercise 1. Confirm that (41) does indeed give you (40). (Hint: Each representation is

charged under the centre of the group Z(SO(8)) = Z2 × Z2 and this charge is conserved

under the tensor product.)

The multiplet for type IIB is the chiral equivalent of (41)

GIIB = ([1000]8 + [0001]8)([1000]8 + [0001]8)

= [2000]8
35︸ ︷︷ ︸

Graviton

+ [0100]8
28︸ ︷︷ ︸

2-Form

+ [0000]8
1︸ ︷︷ ︸

Dilaton

+2 [1001]8
56︸ ︷︷ ︸

Gravitino

+2 [0010]8
8︸ ︷︷ ︸

Co-Spinor

+ [0002]8
35︸ ︷︷ ︸

Self-Dual 4-Form

+ [0000]8
1︸ ︷︷ ︸

Axion

+ [0100]8
28︸ ︷︷ ︸

2-Form

(42)

where the other choice of spinor gives a physically equivalent theory. A final note on this is

that in the case of type IIB we have 2 scalars which we are free to rotate into each other, this

means that there is an SO(2) R-symmetry.

3.3 Lower dimensional theories

We can continue the process of reducing the dimensions. And since the spinors of SO(8) will

reduce to the same (and only) spinor of SO(7) it does not matter if we reduce type IIA or type

IIB, we will get the same multiplet in 9d. So we get that the lower dimensional multiplets are

G9 = [200]7
27

+ 3[100]7
3×7

+ 3[000]7
3×1

+ 2[010]7
2×21

+ 2[101]7
2×48

+ 4[001]7
4×8

+ [002]7
35

G8 = [020]6
20

+ 6[010]6
6×6

+ 7[000]6
7×1

+ 3[101]6
3×15

+ 2[110]6
2×20

+ 6[001]6
6×4

+ 2[011]6
2×20

+ 6[100]6
6×4

+ [200]6
10

+ [002]6
10

G7 = [20]5
14

+ 10[10]5
10×5

+ 14[00]5
14×1

+ 5[02]5
5×10

+ 4[11]5
4×16

+ 16[01]5
16×4

G6 = [22]4
9

+ 16[11]4
16×4

+ 25[00]4
25×1

+ 5[20]4
5×3

+ 5[02]4
5×3

+ 4[21]4
4×6

+ 4[12]4
4×6

+ 20[01]4
20×2

++20[10]4
20×2

G5 = [4]3
5

+ 17[2]3
17×3

+ 42[0]3
42×1

+ 10[2]3
10×3

+ 8[3]3
8×4

+ 48[1]3
48×2

,

(43)

where for G8 and G6 we use An Dynkin labels since SO(6) ≃ A3 and SO(4) ≃ A1 ×A1. When

continuing to the 4d case, the little group becomes abelian and we will use fugacities to keep

10



3. Theories with 32 Supercharges

track of charges, so

[2]3 = q2 + q−2 + 1

[1]3 = q + q−1 .
(44)

One might notice that this is equivalent to writing out the character of the SO(3) representa-

tions. We get that the gravity multiplet becomes

G4 = q4 + 8q3 + 28q2 + 56q1 + 70 + 56q−1 + 28q−2 + 8q−3 + q−4 . (45)

And in going down to G3, all vector quantities become scalars so we only distinguish between

scalar (even power of q) and spinor (odd power of q)

G3 = 128 + 128q . (46)

Another important point is that because the spinors of SO(8) reduce to the same (and only)

type of spinor in SO(7), it does not matter if we reduce type IIA or type IIB, we will get the

same multiplet in 9d.

Exercise 2. Explicitly derive all Gd for 3 ≤ d ≤ 10 from the 11d multiplet.

3.4 Moduli spaces

Scalars in quantum field theories admit a vacuum expectation value (vev), the possible values

of the vevs give us the so-called moduli space of vacua. For theories with 32 supercharges,

the moduli spaces are intricately linked to the exceptional algebra En. We begin by listing the

number of scalars in the gravity multiplet in each dimension, which immediately follows from

our previous discussion on dimension reduction, see table 2. The scalars give us degrees of

freedom in the moduli space and, hence, tell us the dimension of the moduli space.

Theory: 11d Type IIA Type IIB 9d 8d 7d 6d 5d 4d 3d

Scalars: 0 1 2 3 7 14 25 42 70 128

Table 2: Number of scalars in theories with 32 supercharges.

The next step is to pair every theory in d dimensions to an exceptional algebra En such

that n+ d = 11, see table 3 and figure 3.

The moduli space is then given by

M =
En(n)

Hn

, (47)
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Theory: 11d Type IIA Type IIB 9d

En Algebra: E0 = ∅ Ẽ1 = U(1) E1 = SU(2) E2 = U(1)× SU(2)

Table 3: Abelian exceptional algebras corresponding to theories in dimensions 11 to 9.

Figure 3: Exceptional algebras corresponding to theories in dimensions 8 to 3.

where En(n) is the maximally non-compact group with algebra En, the first n in the subscript

denotes the rank and the n in brackets denotes the number of non-compact generators minus

the number of compact generators, and Hn is the maximally compact subgroup of En(n).

The split form (or maximally non-compact group) En(n) consists of both compact and non-

compact generators. For the moduli space, we factor out the compact generators and are left

with the non-compact generators, which correspond to the scalar fields in our theory. We have

that

dim En(n) = dim Hn︸ ︷︷ ︸
compact

+dim En(n)/Hn︸ ︷︷ ︸
non-compact

. (48)

Another interesting feature is that Hn corresponds to the R-symmetry.

For example, the 8d theory corresponds to the algebra E3 ≃ A1 ×A2. The maximally non-

compact group with this algebra is SL(2,R)× SL(3,R), and its maximally compact subgroup

12



3. Theories with 32 Supercharges

is SO(2)× SO(3). Hence, the moduli space is

M8 =
SL(2,R)× SL(3,R)
SO(2)× SO(3)

. (49)

And the dimension of this space is

dim M8 = 3 + 8− 1− 3 = 7 , (50)

which matches the number of scalars that we found before. The number of non-compact

generators is 7 and the number of compact generators is 4, which correctly gives us

dim E3(3) = (non-compact) + (compact) = 11 (51)

(3) = (non-compact)− (compact) = 3 . (52)

We extend this analysis to the remaining theories in table 4.

Theory Moduli Space Mn Dimension = Non-compact Gen. Compact Gen.

10d Type IIA R+ 1 0

10d Type IIB SL(2,R)/SO(2) 2 1

9d R+ × SL(2,R)/SO(2) 4 2

8d SL(2,R)×SL(3,R)
SO(2)×SO(3)

7 4

7d SL(5,R)/SO(5) 14 10

6d SO(5, 5)/SO(5)× SO(5) 25 20

5d E6(6)/Sp(4) 42 36

4d E7(7)/SU(8) 70 63

3d E8(8)/SO(16) 128 120

Table 4: Moduli spaces of theories with 32 supercharges.
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4 Theories with 16 Supercharges

4.1 Type I and Heterotic theories

In the following, we will construct multiplets for the heterotic theories and only mention in

passing that there exists another theory, type I, with 16 supercharges in 10 dimensions. We

will properly deal with type I once we have introduced branes and orientifolds.

For theories with 32 supercharges, the minimal multiplet has 232/4 = 256 degrees of freedom,

corresponding to the supergravity multiplet. Similarly, the minimal supermultiplet in a theory

with 16 supercharges has 216/4 = 16 degrees of freedom.

Since we also want to preserve supersymmetry, we need an equal number of bosonic and

fermionic degrees of freedom, the vector multiplet (vplet) in 10d satisfies this and is

V10
16

= [1000]8
8

+ [0001]8
24−1=8

. (53)

To get a graviton, and thus the gravity multiplet, we simply need to tensor product this with

[1000]8
G10 = V10[1000]8

=
(0,0)

[1000]8[1000]8
64

+
(0,1)

[0001]8[1000]8
64

= [2000]8
35

Graviton

+ [0100]8
28

2-Form

+ [0000]8
1

Dilaton︸ ︷︷ ︸
NS-NS sector

+ [1001]8
56

Gravitino

+ [0010]8
8

Gravifermion︸ ︷︷ ︸
R-NS sector

,
(54)

where we have as usual denoted the dimensions, as well as the charge under the centre of SO(8)

i.e. the charge under Z2 × Z2. We may note at this point that because there is no R-R sector,

there cannot be any D branes (this statement will make more sense once we have actually dealt

with branes). The interpretation of the above equation is that we have a closed string whose

left (right) moving modes are supersymmetric and whose right (left) moving modes are purely

bosonic.

The gauge field in the vector multiplet admits a Yang-Mills extension, and we may write

this as

V × (adjoint of gauge group) = V A . (55)

The massless sector of the heterotic theories is

V A+G = V︸︷︷︸
left moving

× (A+ [1000]8)︸ ︷︷ ︸
right moving

. (56)
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Additionally, to ensure that the theory is anomaly free we need the gauge group to be of

dimension 496. The only groups of this dimension are E8 × E8 and SO(32). The resulting

theories are thus

• Heterotic SO(32)

• Heterotic E8 × E8.

4.2 Lower dimensional theories

Similar to the discussion on dimensional reduction for theories with 32 supercharges, we can

dimensionally reduce the multiplets (53) and (54). One finds that in general for 5 ≤ d ≤ 10

Vd 7→ Vd−1

Gd 7→ Gd−1 + Vd−1 ,
(57)

as well that the gravity multiplet Gd includes only a single scalar for 4 ≤ d ≤ 10.

Explicitly calculating the lower dimensional vector multiplets, we find

V9 = [100]7 + [000]7 + [001]7

V8 = [010]6 + 2[000]6 + [100]6 + [001]6 ,
(58)

since there are 2 scalars in V8 we can rotate them into each other, giving us an external SO(2)

symmetry, the R-symmetry. To keep track of the charge under SO(2), we can assign fugacities

and write

V8 = [010]6 + [100]6q
1 + [001]6q

−1 + [000]6(q
2 + q−2). (59)

Continuing this spiel, for V7

V7 = [10]5 + 2[01]5 + 3[00]5

= [10]5[00]R + [01]5[1]R + [00]5[2]R ,
(60)

where we have recognised the R-symmetry to be SO(3) ≃ A1 and labelled the R-symmetry

representation with a subscript R. The remaining vector multiplets are

V6 = [11]4[00]R + [10]4[10]R + [01]4[01]R + [00]4[11]R

V5 = [2]3[00]R + [1]3[01]R + [0]3[10]R

V4 = (q2 + q−2)[000]R + q[100]R + q−1[001]R + q0[010]R

V3 = q[0001]R + [1000]R .

(61)

One might notice that for V3 the number of scalars increases by 2 to 8, so the R-symmetry is

SO(8).
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Another important aspect is that because the gauge group is of rank 16, we will get an addi-

tional 16 massless vector multiplets upon dimensional reduction. So, starting in 10 dimensions,

we have

G10 → G9 + 17V9 → G8 + 18V8 → G7 + 19V7 → · · · . (62)

For 5 ≤ d ≤ 9 the moduli space turns out to be

Md =
SO(n, n− 16)

SO(n)× SO(n− 16)
× R+ , (63)

with special cases

M10 = R+

M4 =
SO(22, 6)

SO(22)× SO(6)
× SL(2,R)

SO(2)

M3 =
SO(24, 8)

SO(24)× SO(8)
,

(64)

with the second factor for M4 reflecting the fact that G4 now has 2 scalars rather than just 1,

and for M3 G3 completely breaks down??.

4.3 Tensor multiplet

This subsection may be skipped on a first reading and can be returned to after section 5 on

branes.

We have already seen the vector multiplet as the supersymmetric multiplet in theories with

16 supercharges in dimensions 3 to 10. There turns out to be another type of multiplet in 6

dimensions, the so-called tensor multiplet, which we will construct in this section.

Consider first a 5d theory with 16 supercharges, which we can build by putting a D4 brane

in Type IIA. The massless multiplets will thus fall into representations of

SO(3)︸ ︷︷ ︸
Little Group on D4 Brane

× SO(5)︸ ︷︷ ︸
R-Symmetry

⊂ SO(8) .︸ ︷︷ ︸
Little Group Spacetime

(65)

This is the vector multiplet that we have already met in (61)

V5 = [2]3[00]R + [1]3[01]R + [0]3[10]R . (66)

The important conceptual point to understand is that the little group for 5d, SO(3), has

representations in A1 and the little group for 6d, SO(4), has representations in A1 × A1. As

such, we can simply stick a 0 into the Dynkin labels for the little group of V5 to make a new
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multiplet for a 6 dimensional theory. We can do this in two ways

T(2,0) = [20]4[00]R + [10]4[01]R + [00]4[10]R

T(0,2) = [02]4[00]R + [01]4[01]R + [00]4[10]R ,
(67)

which are the tensor multiplets. We then also have two types of gravity multiplet in 6d, the

one we get by dimensional reduction is

G(1,1) = V6[11]4

=

(
[11]4[00]R + [10]4[10]R + [01]4[01]R + [00]4[11]R

)
[11]4

=

(
[22] + [20] + [02] + [00]

)
4

[00]R +

(
[12] + [10]

)
4

[01]R

+

(
[21] + [01]

)
4

[10]R + [11]4[11]R ,

(68)

and the one from the tensor multiplet

G(2,0) = T(2,0)[02]4

= [22]4[00]R + [12]4[01]R + [02]4[10]R .
(69)
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5 Generalised Electromagnetism (From Forms to Branes)

5.1 Basic principle

Electromagnetism in 4d is described by the familiar action

S =

∫
F (2) ∧ ∗F (2) + A(1) ∧ ∗J (1) , (70)

where F (2) is the field strength associated with the 1-form gauge field A(1), and in the usual

scenario without magnetic sources the field strength is given by F = dA, and J (1) is the electric

current. We then get the usual Maxwell equations by noting that F (2) satisfies the Bianchi

identity, as well as calculating the equations of motion

dF (2) = 0 and d ∗ F (2) = ∗J (1) . (71)

If we want to include magnetic charges, the Maxwell equations (71) become

dF (2) = ∗J (1)
m and d ∗ F (2) = ∗J (1)

e , (72)

where J
(1)
m and J

(1)
e are the magnetic and electric currents, respectively. For a point-like source,

we simply replace the currents by a delta function

dF (2) = Qmδ
(3) and d ∗ F (2) = Qeδ

(3) . (73)

The next step in the analysis is to generalise this to arbitrary p-forms in D dimensions, this

fortunately is very straightforward to do. For a form C(p) there is an associated field strength

G(p+1) and the Maxwell equations are

dG(p+1) = Qmδ
(p+2) and d ∗D G(p+1) = Qeδ

(D−p) . (74)

5.2 Branes in 11d supergravity

The massless multiplet in 11d supergravity is

[2000] + [0010] + [1001] , (75)

from this we can tell that there is 3-form, which we may call C(3) as well as its corresponding

field strength G(4). We can now replace G(p+1) in (74) to get

dG(4) = Qmδ
(5) and d ∗11 G(4) = Qeδ

(8) . (76)
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Here the magnetically charged object is locallised in 5 space dimensions and thus spans over

5 other space dimensions, we call this object the M5 brane. On the other hand, the electri-

cally charged object is localised in 8 space dimensions and hence spans over the 2 remaining

directions, this is called the M2 brane.

5.3 Branes in Type IIA

For theories in lower dimensions, we can proceed in the same fashion. The multiplet in Type

IIA is

[2000] + [0100] + [0000]︸ ︷︷ ︸
NS-NS Sector

+ [1001] + [0010] + [1010] + [0001]︸ ︷︷ ︸
NS-R Sector

+ [0011] + [1000]︸ ︷︷ ︸
R-R Sector

, (77)

where we identify the form B(2) in the NS-NS sector (we are neglecting the dilaton 0-form since

it does not source a brane) and the forms C(3), C(1) in the R-R sector.

For the forms in the R-R sector, we may begin with C(1)

dG(2) = Qmδ
(3) and d ∗10 G(2) = Qeδ

(9) , (78)

by the same logic as for the 11d supergravity case, we have a so-called D6 brane and D0

brane which function as a magnetic source and an electric source, respectively. Continuing

with the C(3), we have

dG(4) = Qmδ
(5) and d ∗10 G(4) = Qeδ

(7) , (79)

giving us aD4 brane and aD2 brane. There is also a non-dynamicalD8 brane, but contrary

to the other branes does not come from a form field in the multiplet. We can already note that

in Type IIA we have even Dp branes.

For the NS-NS sector, we only have the B(2) form with field strength H(3)

dH(3) = Qmδ
(4) and d ∗10 H(3) = Qeδ

(8) , (80)

these objects are called the NS5 brane and the F1 brane, where the latter is the fundamental

string.
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5.4 Branes in Type IIB

The multiplet in Type IIB is

[2000] + [0100] + [0000]︸ ︷︷ ︸
NS-NS Sector

+2[1001] + 2[0010]︸ ︷︷ ︸
NS-R Sector

+ [0002] + [0100] + [0000]︸ ︷︷ ︸
R-R Sector

, (81)

where the NS-NS sector is identically, so the same results as for Type IIA follow, and we have

the form fields C(0), C(2) and C(4)+. The 4-form corresponds to the self-dual part of Λ4[1000].

Beginning with the C(0) form and its field strength G(1)

dG(1) = Qmδ
(2) and d ∗10 G(1) = Qeδ

(10) , (82)

where the magnetic source is the D7 brane and the electrical source is an object which is both

localised in space and in time, this is an instanton and is usually referred to as the D(-1)

brane. For the C(2) we get

dG(3) = Qmδ
(4) and d ∗10 G(3) = Qeδ

(8) , (83)

these are the D5 brane and the D1 brane. The field strength G(5) associated with the self-

dual form C(4) is special because in 10d it is itself self-dual G(5) = ∗10G(5), the consequence is

that we will have an object which is both magnetically and electrically charged

dG(5) = d ∗10 G(5) = Qe/mδ
(6) . (84)

We thus say that the D3 brane is a dyonic object. Here we are again missing a brane, namely

the D9 brane, since it is space filling, it is non-dynamical. The importance of the D9 brane

will become clearer in section 7.

5.5 More properties of branes

We have so far met the M2 and M5 brane in 11d supergravity, as well as the Dp brane with

−1 ≤ p ≤ 9 from the RR sector and the NS5 and F1 branes from the NS-NS sector. In general,

a p brane will break Minkowski space into its own worldvolume and the space surrounding it

R1,p︸︷︷︸
World Volume

× R9−p︸︷︷︸
Point-like

⊂ R1,9︸︷︷︸
Spacetime

. (85)

Because we are breaking a continuous symmetry, there will be 9 − p Goldstone modes living

on the p brane. Additionally, branes break half the supersymmetry on their world volume (32

supercharges to 16 supercharges), resulting in 8 goldstinos. At first, this might seem like a

problem because we already know that there should be 8 bosonic degrees of freedom and 8
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fermionic degrees of freedom. To remedy this, we will have to consider branes ending on branes

in the next section.
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6 Branes Ending on Branes

6.1 F1 brane ending on Dp brane

For this first case of branes ending on branes, we will give a pedagogical introduction to what

happens when we spatially restrict branes to other branes. We recall that in Type IIA/IIB we

have an F1 brane which is electrically charged under a 2-form B(2)

d ∗10 H(3) = Qeδ
(8) , (86)

where H(3) is the field strength of B(2).

Figure 4: F1 brane ending on a Dp brane.

We now assume that the F1 brane ends on some Dp brane, see figure 4. Naively, we can

write this as

d ∗10 H(3) = δ(8)θ , (87)

where we set the charge to Qe = 1 and θ is the Heaviside function. But by taking the exterior

derivative d of both sides, we quickly see that we are missing something

dd ∗10 H(3) = δ(8)dθ

0 = δ(9) ,
(88)

which is obviously wrong. The way to remedy this problem is to think about what the F1

brane would look like from the perspective of someone living on the Dp brane. Since the F1

brane is 2 dimensional, its boundary is 1 dimensional and thus an observer on the brane would

see a 1 dimensional and electrically charged object. Or, in the form of an equation

d ∗p+1 F
(2) = δ(p) . (89)

This can be incorporated into (87) as

d ∗10 H(3) = δ(8)θ − δ(9−p) ∗p+1 F
(2) , (90)
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and, by again taking the exterior derivative d, we reproduce (89).

The next step is to write down an action which will give us (90), again taking the naive

approach we can write

S =

∫
R1,9

H(3) ∧ ∗H(3) +

∫
R1,9

B(2) ∧ δ(9−p) ∗p+1 F
(2) −

∫
R1,9

B(2) ∧ δ(8)θ

=

∫
R1,9

H(3) ∧ ∗H(3)︸ ︷︷ ︸
Spacetime

+

∫
R1,p

B(2) ∧ ∗p+1F
(2)︸ ︷︷ ︸

World-volume Dp Brane

−
∫
R1,1

B(2)θ︸ ︷︷ ︸
World-sheet F1 Brane

.
(91)

The problem we now have is that this is not fully gauge invariant. The gauge transformations

with respect to B(2) are

δBB
(2) = dΛ(1), δBH

(3) = 0, δBA
(1) = Λ(1), and δBF

(2) = dΛ(1) . (92)

Clearly, the spacetime term in the action (91) is already gauge invariant, but the other two are

not. If we look at the variation of the world-sheet term, we get

δB

∫
Σ

B(2)θ =

∫
Σ

dΛ(1) =

∫
∂Σ

Λ(1) , (93)

where we denote the world-sheet of F1 as Σ. If we include an additional term in the action of

the form ∫
∂Σ

A(1) , (94)

one can see that the combination is then gauge invariant. To ensure the remaining term is

gauge invariant, we define F (2) = F (2) − B(2) such that δBF (2) = dΛ(1) − dΛ(1) = 0. Therefore

the gauge invariant action can be written as

S =

∫
R1,9

H(3) ∧ ∗H(3) +

∫
Dp

F (2) ∧ ∗p+1F (2) −
∫
Σ

B(2)θ +

∫
∂Σ

A(1) , (95)

and this also means that the equation of motion is

d ∗10 H(3) = δ(8)θ − δ(9−p) ∗p+1 F (2) . (96)

6.2 M2 brane ending on M5 brane

We can extend our analysis to branes in 11d supergravity. Recall that we have a magnetic M5

brane and an electric M2 brane. The M2 brane can end on the M5 brane. We can again ask

what the M2 brane looks like from the perspective of an observer on the M5 brane. Because

the boundary of the M2 brane is a 2 dimensional, electrically charged object, we have

d ∗6 F (3) = δ(4) , (97)
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which implies that there exists a 2-form A(2) on the world-volume of the M5 brane. Proceeding

in the same way as with the F1 brane ending on a Dp brane, we get the following source

equation for an M2 brane ending on an M5 brane

d ∗11 G(4) = δ(8)θ − δ(4) ∗6 F (3) , (98)

where we again have made the field strength F (3) gauge invariant and wrote it as F (3).

6.3 Dp branes ending on NS5 brane in type IIA

In Type II theories we can have Dp branes ending on NS5 branes for 0 ≤ p ≤ 6. We will begin

with branes in Type IIA before moving on to Type IIB. As discussed in section 5.3,

• The D6 brane carries a magnetic charge and the D0 brane an electric charge under

the 1-form C(1)

• The D4 brane carries a magnetic charge and the D2 brane an electric charge under

the 3-form C(3).

D0 ending on NS5 The boundary of the D0 brane is a 0 dimensional, electrically charged

object. From the NS5 brane it looks like

d ∗6 F (1) = δ(6) . (99)

We therefore have a 0-form A(0) on the world-volume on the NS5 brane, the source equation

becomes

d ∗10 G(2) = δ(9)θ − δ(4) ∗6 F (1) . (100)

Since we have a 0-form A(0), we could also have a magnetically charged object under it. This

would look like

dF (1) = δ(2) , (101)

which is some 3 brane, of course, this will turn out to be the boundary of a D4 brane ending

on NS5.

D4 ending on NS5 The boundary of the D4 brane is a 4 dimensional, magnetically charged

object and is, as we have already seen,

dF (1) = δ(2) . (102)

The source equation looks slightly different now, reflecting the fact that D4 is magnetically

charged,

dG(4) = δ(5)θ − δ(4)F (1) . (103)
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D2 ending on NS5 Again, the boundary of D2 is 2 dimensional and electrically charged

and thus

d ∗6 F (3) = δ(4) . (104)

This gives us a self-dual 2-form A(2)+, the corresponding magnetically charged object looks like

dF (3) = δ(4) . (105)

D6 ending on NS5 The magnetically charged D6 brane is special because its 6d boundary

is the entire NS5 brane, as a result, we get that n1 = n2 for two D6 branes connected to a NS5

brane, see figure 5. This is essentially a statement of conservation of charge.

Figure 5: D6 brane ending on a NS5 brane.

Lastly, let us summarise the form field content that we have found on the NS5 brane from

our analysis: A 0-form A(0) and a self-dual 2-form A(2)+. To accommodate these forms and

looking back to our discussions of multiplets with 16 supercharges in section 4, we know that

on the NS5 brane, we must have a tensor multiplet T(2,0).

6.4 Dp branes ending on NS5 brane in type IIB

Moving on to the branes in type IIB, we have

• D7 carrying a magnetic charge and D(-1) carrying an electric charge under C(0)

• D5 carying a magnetic charge and D1 carrying an electric charge under C(2)

• D3 carying a magnetic and an electric charge under C(4)+ .

The D7 and D(-1) cannot end on the NS5 brane, for the others we have:

D1 ending on NS5 The boundary of the D1 brane is an electrically charged 1 dimensional

object, thus

d ∗6 F (2) = δ(5) . (106)

This means that D1 ending on NS5 induces a gauge field A(1). The object which would be

magnetically charged under this field is

dF (2) = δ(3) . (107)
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This is a 2 brane, which we know will be the boundary of D3 brane.

D3 ending on NS5 Since the D3 brane is a dyonic object, its 3 dimensional boundary will

also have both electric and magnetic charges

d ∗6 F (4)
1 = δ(3) and dF

(2)
2 = δ(3) , (108)

giving us a 3-form A
(3)
1 and a 1-form A

(1)
2 . In 6d, a 3-form is nothing but a 1-form, since

Λ3[11] = [11]. The object which is magnetically charged under the 3-form looks like

dF (4) = δ(5) , (109)

which is a 0 brane, or the boundary of a D1 brane.

D5 ending on NS5 This case is again a little bit special, since the boundary of the D5

brane splits the NS5 brane into 2 halves, we have a domain wall. This is essentially like a

capacitor, with charges Q1 and Q2 on the respective sides of the NS5 brane and their difference

is proportional to the charge of the D5 brane

Q1 −Q2 ∝ QD5 Brane . (110)

We have found a 1-form on the NS5 brane, as such, we can no longer have the tensor

multiplet on NS5 but will rather have the vector multiplet V6.

6.5 (p, q) strings and branes in type IIB

We have brushed over an important aspect of type IIB theories. As we already know, we have

two 2-forms: C(2) in the RR sector (giving rise to D1 and D5) and B(2) in the NS-NS sector

(giving rise to F1 and NS5). Suppose that we have an F1 brane ending on D1, as we have

seen for the case of D5 ending on NS5, the boundary of the F1 brane acts as a domain wall.

Therefore, if we label the charge under the forms as

F1: ( 1︸︷︷︸
B(2) Charge

, 0︸︷︷︸
C(2) Charge

) and D1: ( 0︸︷︷︸
B(2) Charge

, 1︸︷︷︸
C(2) Charge

) , (111)

we find that one side of the D1 brane needs to have a charge of (1, 1), see figure 6.

Figure 6: (p, q) strings. Don’t think this is right.. maybe n D1 branes give (0,n)?

We can make the same constructions for the 5 branes, D5 and NS5, where we define the
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charges as

NS5: ( 0︸︷︷︸
C(2) Charge

, 1︸︷︷︸
B(2) Charge

) and D5: ( 1︸︷︷︸
C(2) Charge

, 0︸︷︷︸
B(2) Charge

) . (112)

And we have the general rule: A (p, q) string can only end on a (p, q) brane.

6.6 (p, q) string ending on a (p, q) brane

For a free F1 and D1 brane, we have source equations

d ∗10 H(3) = pδ(8) (113)

d ∗10 G(3) = qδ(8) , (114)

where p and q are the charges under the respective fields. In the space-time picture, we could

also write this as a vector equation

d ∗10

H(3)

G(3)

 =

p
q

 δ(8) , (115)

which is invariant under SL(2,Z).

If the (p, q) string ends on the (p, q) 5-brane, we will see an electric 0-brane which crucially

does not depend on p or q as the worldvolume observer has no knowledge of either one, we

write

d ∗6 F (2) = δ(5) . (116)

The source equations are therefore

d ∗10 H(3) = pδ(8)θ − pδ(4) ∧ ∗6F (2) (117)

d ∗10 G(3) = qδ(8)θ − qδ(4) ∧ ∗6F (2) , (118)

where the additional factors of p and q in front of the δ(4)∧∗6F (2) terms ensure that, if we take

the exterior derivative, we recover (116) without any p or q dependence.

The next step is to write an action which reproduces the three equations of motion (116),
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(117) and (118). An initial first guess would be

S =

∫
R1,9

H(3) ∧ ∗10H(3) +G(3) ∧ ∗10G(3) (119)

+

∫
(p,q) 5-brane

−F (2) ∧ ∗6F (2) + (pB(2) + qC(2)) ∧ ∗6F (2) (120)

+

∫
(p,q) string

−pB(2) − qC(2) +

∫
∂(p,q) string

A(1) . (121)

This action is not gauge invariant. To fix this, we first anticipate that we will need to change

the 5-brane worldvolume term to∫
(p,q) 5-brane

(pB(2) + qC(2) − F (2)) ∧ ∗6(pB(2) + qC(2) − F (2)) , (122)

where we will define F (2) = pB(2) + qC(2) − F (2) from now on. For the gauge variations

δBB
(2) = dΛ(1) , δBC

(2) = 0 , and δBA
(1) = pΛ(1), (123)

the term F (2) is gauge invariant

δBF (2) = pδBB
(2) − δBF

(2) = p dΛ(1) − p dΛ(1) = 0 , (124)

and similarly for the variation with respect to C(2). The term on the (p, q) string transforms as∫
(p,q) string

pδBB
(2) −

∫
∂(p,q) string

δBA
(1) =

∫
(p,q) string

p dΛ(1) −
∫
∂(p,q) string

pΛ(1) = 0 , (125)

which follows from Stokes’ theorem. Hence, the action is now completely invariant under the

variation of B(2) and similarly of C(2). It remains to check the what happens if we vary with

respect to A(1), in this case we have

δAA
(1) = dϕ(0) , (126)

with all other fields receiving zero variation. And the variation of the term on the boundary of

the (p, q) string is ∫
∂(p,q) string

δAA
(1) =

∫
∂(p,q) string

dϕ(0) = 0 , (127)

again using Stokes’ theorem.

To conclude, we have shown that the final gauge invariant action reproducing the equations
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of motions is

S =

∫
R1,9

H(3) ∧ ∗10H(3) +G(3) ∧ ∗10G(3) +

∫
(p,q) 5-brane

F (2) ∧ ∗6F (2) (128)

+

∫
(p,q) string

−pB(2) − qC(2) +

∫
∂(p,q) string

A(1) . (129)

6.7 D(p− 2) brane ending on Dp brane

Let us try to argue why we can have a D(p− 2) brane ending on a Dp brane. We already know

that we can have a fundamental string F1 end on a Dp, and since the F1 brane is electrically

charged under B(2), its boundary looks like

d ∗p+1 F
(2) = δ(p) . (130)

And so we have a 1-form, the corresponding magnetically charged object looks like

dF (2) = δ(3) , (131)

which is a p− 3 brane, or the boundary of a D(p− 2) brane.

6.8 Branes within branes

Furthermore, because we have a 2-form field strength, we can have a term like∫
Dp

C(p−3) ∧ F (2) ∧ F (2) (132)

???
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7 Branes as Algebraic Objects

7.1 An algebra

There is a deep connection between brane systems and algebras. To illustrate this, we will use

branes to construct an An algebra. Suppose we have n Dp branes, and to each we will assign

an orthonormal basis element ei with i = 1, ..., n such that (ei, ej) = δij. Then there can be

various F1 strings with different orientations between the different branes, see figure 7. At this

point, we may also note that the moduli space here is

M = R9−p︸︷︷︸
Centre of Mass

×(R9−p)n−1

Sn

, (133)

and a string between two branes corresponds to a gauge boson with mass mij ∼ |xi − xj|.

Figure 7: n Dp branes with various oriented strings between them.

Suppose now that we define a special set of these strings with a fixed orientation that

connect neighbouring branes

α1 = e1 − e2, α2 = e2 − e3, ... , αn−1 = en−1 − en . (134)

This can also be seen in figure 8. The strings of this type correspond to the simple roots of An−1.

To confirm that they indeed give us the An−1 algebra, we first compute the inner products
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Figure 8: GET RID OF SIGNS. n Dp branes with strings, corresponding to simple roots of An−1,
between them.

of the simple roots

(αi, αi) = 2 (135)

(αi, αi+1) = −1 (136)

(αi, αj>i+1) = 0 . (137)

And therefore, the Cartan matrix elements are

Ci,i+1 = 2
(αi, αi+1)

(αi, αi)
= −1 (138)

Ci,j>i+1 = 2
(αi, αj>i+1)

(αi, αi)
= 0 , (139)

which gives us the correct Cartan matrix.

7.2 Orientifold planes

One can imagine, or guess by reading the section titles in the contents, that we can do some-

thing similar for the other classical algebras Bn, Cn and Dn. But before we can do so, we will

need to introduce a new object into the mix.

The orientifold plane Op can be thought of as a reflection of spacetime in its transverse

space R9−p/Z2. It is defined by combining the action of parity on the world sheet with a

spacetime reflection. We summarise some of its properties, the Op plane

(i) is non-dynamical,

(ii) breaks the same amount of supersymmetry as a Dp brane,

31



7. Branes as Algebraic Objects

(iii) reflects Dp branes from one side to the other, see figure 9,

(iv) is charged under a RR (p+ 1)-form,

(v) might have negative tension.

Figure 9: A Dp brane being reflected across an Op plane.

If we again put our n Dp branes back into this picture, then there are three general ways

a string can connect on/across the orientifold plane. We begin with the so-called Õp− plane.

Here, a string is allowed to extend from one side of the orientifold plane across to the other

side and connect to any brane except its image, but it is also allowed to end on the Õp− plane

itself, see figure 10. We will also refer to this boundary as short, which will make more sense

later on.

Figure 10: Boundary conditions of the Õp− plane.

Another possible boundary condition is the so-called Op+ plane. The string is no longer

allowed to end on the Op+ plane, but can now connect to its image, see figure 11. This is the

long boundary condition.

The last possible configuration of strings is called the Op− plane, which forbids both of

the above cases, see figure 12. This could be called a non-boundary or split boundary.

As a last comment before we move on to constructing the other classical algebras, the

charges of the different Op planes under the C(p+1) form are
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Figure 11: Boundary conditions of the Op+ plane. The grey string is not allowed in this setup.

Figure 12: Boundary conditions of the Op− plane. The grey strings are not allowed in this setup.

• Õp−: −2p−5 + 1
2

• Op+: 2p−5

• Op−: −2p−5 .

Physically, the Õp− plane corresponds to an Op− plane with half a Dp brane stuck on it.

TENSIONS?

7.3 Bn, Cn and Dn algebras

Bn Algebra Starting with the Bn algebra, we can take n Dp branes and a Õp− plane. The

setup is shown in figure 13, where we note that the branes on the opposite side of the orientifold

have a negative basis element. We now choose the set of simple roots to be

α1 = e1 − e2, . . . , αn−1 = en−1 − en , αn = en , (140)

where the last string is between the rightmost brane and the orientifold plane, giving us a total

of n simple roots. The positive roots are

ei − ej , ei − (−ej) and ei for j > i , (141)
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and, if you count them, you will find that there are n2 of them, as is correctly the case for Bn.

Since we also have strings with the opposite orientation, we naturally get the set of negative

roots. Moving on to computing the Cartan matrix elements, the cases not involving αn follow

from our previous discussion on An, and the remaining cases are

Cn−1,n = 2
(αn−1, αn)

(αn−1, αn−1)
= −1 (142)

Cn,n−1 = 2
(αn, αn−1)

(αn, αn)
= −2 , (143)

which is, of course, what we needed.

Figure 13: Brane and orientifold setup for the Bn algebra. Simple roots are shown in red, and some
examples of other positive roots are shown in blue.

Cn Algebra Next up is the Cn algebra, we take n Dp branes as well as a Op+ plane. The

setup and our choice of simple roots are shown in figure 14. As one can see from the figure, the

simple roots are

α1 = e1 − e2, . . . , αn−1 = en−1 − en , αn = 2en , (144)

and the other positive roots

ei − ej for i < j , ei − (−ej) and 2ei for any i, j . (145)

Again, it is easy to confirm that this replicates the Cartan matrix elements correctly

Cn−1,n = 2
(αn−1, αn)

(αn−1, αn−1)
= −2 (146)

Cn,n−1 = 2
(αn, αn−1)

(αn, αn)
= −1 . (147)

34



7. Branes as Algebraic Objects

Figure 14: Brane and orientifold setup for the Cn algebra. Simple roots are shown in red, and some
examples of other positive roots are shown in blue.

Dn Algebra For the last case, we need n Dp branes and the last remaining Op− plane. We

choose the simple roots to be

α1 = e1 − e2, . . . , αn−1 = en−1 − en , αn = en−1 + en , (148)

as can also be seen in figure 15, and the positive roots are

ei − ej for i < j , ei − (−ej) for any i, j . (149)

The relevant Cartan matrix elements are

Cn−2,n = 2
(αn−2, αn)

(αn−2, αn−2)
= −1 (150)

Cn,n−2 = 2
(αn, αn−2)

(αn, αn)
= −1 (151)

Cn−1,n−2 = 2
(αn−1, αn−2)

(αn−1, αn−1)
= 0 (152)

Cn−2,n−1 = 2
(αn−2, αn−1)

(αn−2, αn−2)
= 0 . (153)

7.4 Adjoint Higgs mechanism

We know that a single Dp brane supports a U(1) gauge field, and if we have n separate branes,

this leads to a U(1)n gauge symmetry. We also know that a string between two branes corre-

sponds to a massive gauge boson with mass mij ∼ |xi − xj|. The indices i, j = 1, . . . , n are

also referred to as Chan-Paton indices. But this implies that, if all branes coincide, we have

a total of n2 vector multiplets and the gauge group enhances to the adjoint of U(n). This is

called the adjoint Higgs mechanism, because analogous to the Higgs mechanism, moving

the branes apart gives masses to gauge fields.
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Figure 15: Brane and orientifold setup for the Dn algebra. Simple roots are shown in red, and some
examples of other positive roots are shown in blue.

For the case of n Dp branes, suppose we have multiple groups of coinciding branes, for

example 4 Dp branes coincide at position x1 and 20 Dp branes coincide at position x2. Then

we label the number of coinciding branes by ni, and this will form a partition of the total

number of branes n = n1 + · · ·+ nk. The most general form of the gauge group is

k∏
i=1

U(ni) , (154)

where {ni} is the said partition.

This now generalises straightforwardly using our earlier results on how to construct different

gauge groups with orientifold planes. We will now use n0 to denote the number of branes

coinciding on the orientifold itself, and n1, . . . , nk for other groupings. The result for the

different Op planes is

Õp− : O(2n0 + 1)×
k∏

i=1

U(ni) (155)

Op+ : Sp(n0)×
k∏

i=1

U(ni) (156)

Op− : O(2n0)×
k∏

i=1

U(ni) , (157)

where of course the Bn algebra corresponds to the group O(2n+1), the Cn algebra to the group

Sp(n), and the Dn algebra to O(2n). All these groups are called the Levi subgroups.

This singularity structure can also be encoded in a Hasse diagram, for example, in the

case of four Dp branes
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U(1)4, 1111

U(1)2 × U(2), 112

U(1)× U(3), 13 U(2)× U(2), 22

U(4), 4

We have not discussed two important points. One of them is that, instead of strings between

Dp branes, we could equally well have D(p− 2) branes between Dp branes. This will give the

magnetic spectrum and the boundary conditions of the Op planes changes. The other point

which we have neglected is the existence of a fourth orientifold plane, the Õp+ plane. The

complete result may now be summarised as in table 5.

Op Plane F1 D(p− 2)

Op− None (Dn) None (Dn)

Õp− Short (Bn) Long (Cn)

Op+ Long (Cn) Short (Bn)

Õp+ Long (Cn) Long (Cn)

Table 5: Boundary Conditions for different Op planes and the resulting algebras.

7.5 Type I

We can now finally talk about the 10 dimensional theory which we have not discussed in sec-

tion 4. Type I is a theory of open strings and unoriented closed strings, so of Neumann

boundary conditions only. We also recall that for an F1 brane ending on a Dp brane, it is

subject to p + 1 Neumann boundary conditions and 9 − p Dirichlet boundary condition. And

therefore, a D9 brane extending through all of spacetime would give us just the right conditions.

A problem arises if look at how the D9 brane couples to the 10-form A(10) with field strength

F (11)

d ∗10 F (11) = Qδ(0) . (158)

The corresponding term in the action can be written as

Q

∫
D9

A(10) , (159)

which is effectively a Lagrange multiplier that forces Q = 0 on-shell. To make the two state-

ments above agree with each other, one that the charge is Q = 1 as in (158), and two that
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Q = 0 as in (159), we note that O9− has charge −16. If we hence stack 16 D9 branes on top

of an O9− plane, we get an object with overall charge Q = 0, yet each of the D9 branes can

still couple to the 10-form with charge Q = 1. It follows that the gauge symmetry is O(32) and

since branes are half-BPS states, there are 16 supercharges.
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8 Aside: Classical Solutions

Tong TASI lectures

8.1 Gauge Instantons

codim = 4

D5 inside D9, F1 inside NS5, Dp inside D(p+4)

8.2 Monopoles

codim = 3

D6, D3 on NS5, Dp ending on D(p+2)

’t Hooft Polyakov monopole

8.3 Vortices

codim = 2

D7, D4 ending on NS5, F1 ending on D2

logarithmic behavious, deficit angle

8.4 Domain Walls

codim = 1

D8, D5 ending on NS5, F1 ending on D1
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9 Dualities

9.1 Parameters in string theory

In all 10-dimensional theories, we have a dilaton Φ in the universal NS-NS sector that couples

to the worldsheet as ∫
d2σ

√
hRΦ , (160)

where h is the determinant of the worldsheet metric and R is the Ricci scalar encoding the

curvature of the worldsheet. And if Φ admits a vacuum expectation value Φ0, we have the

following neat result
Φ0

4π

∫
d2σ

√
hR = Φ0χ

= Φ0(2− 2g − h)

(161)

where we have (for once) included the necessary constants, g is the genus or number of holes,

and h is the number of boundaries.

To illustrate this, we can consider a scattering process in the path integral formulation

e−S = e−Φ0(2−2g−h) . (162)

Suppose we have some 2-2 scattering, as shown in figure 16, then we can compute the ratio of

the one-loop correction to the tree-level contribution to be e2Φ0 . And the string coupling is

gs = eΦ0 . (163)

In the case of small gs << 1, we can use perturbative methods in calculations, but if gs ∼ 1,

we cannot use perturbative methods.

Figure 16: Scattering of a string.
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When we look at the kinetic term in the action of a string

TF1

∫
d2σ

√
hhij∂iX

µ∂jX
νGµν , (164)

where

TF1 =
1

l2s
, (165)

is the tension of the F1 brane. The parameters gs and ls (or T ) completely specify the

objects in our theories. For Dp branes, we can have an F1 ending on them, which means that

the Euler number of this setup is χ = 1 due to the boundary. This contributes a factor of

e−S = e−Φ0 = 1/gs and hence the tension of a Dp brane is

TDp =
1

gsl
p+1
s

. (166)

Similarly, for the NS5 brane the Euler number is χ = 0 and the tension of the NS5 brane

becomes

TNS5 =
1

g2s ls
6
. (167)

In M-theory, we do not have a microscopic description. But for 11d supergravity, we do

have a metric and so can write the Einstein-Hilbert action

1

G

∫
d11x

√
gR . (168)

From this, we can tell that G needs to have the following length scale

[G] = l9p , (169)

where we have defined the Planck length as the fundamental length scale. The tension of the

M2 brane becomes

TM2 =
1

l3p
, (170)

and the tension of the M5 brane is

TM5 =
1

l6p
. (171)
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9.2 Dualities for theories with 32 supercharges

9.2.1 M theory on S1 ↔ Type IIA

We begin with a duality which we have already encountered, this is the duality resulting from

compactifying M theory to get type IIA, we say that: M theory on S1×M10 is dual to type IIA

on M10. Our task is essentially to match the parameters of M theory (the Planck length lp and

the radius of the cirlce R) to the parameters of type IIA (the dilaton gs and the fundamental

string length ls).

Since there are two parameters, we need to postulate two duality relations and the remaining

ones can be calculated from our result. From considering the dimensions we have that

M2 on S1 ↔ F1 (172)

M2 ↔ D2 . (173)

Matching the tensions of these objects,

TM2 on S1 = TF1 =⇒ R

l3p
=

1

l2s
(174)

TM2 = TD2 =⇒ 1

l3p
=

1

gsl3s
, (175)

and therefore the equations characterising the duality are

l3p = gsl
3
s and R = gsls . (176)

Using this result, we can derive the other duality relations. The complete list is then

M2 on S1 ↔ F1 (177)

M2 ↔ D2 (178)

M5 on S1 ↔ D4 (179)

M5 ↔ NS5 (180)

Momentum Mode ↔ D0 (181)

Kaluza-Klein Monopole ↔ D6 , (182)

where we have used the inverse relations of (176) to find that the D0 brane is dual to the

so-called momentum mode (the excitation mode from wrapping a string around a circle) and

that the D6 brane is dual to the Kaluza-Klein monopole (a monopole carrying the magnetic

charge of a U(1) Kaluza-Klein gauge symmetry).
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From (176) we can tell that for the case of large gs, we are essentially growing another

dimension, and can consider type IIA as M theory. Since the strong coupling limit is related

to a different theory we call this duality an S-duality.

9.2.2 Type IIB ↔ Type IIB: The SL(2,Z) Duality

Suppose we have two type IIB theories with different parameters: gs, ls and g′s, l
′
s. They are

related by a duality where

F1 ↔ D1 (183)

D3 ↔ D3 , (184)

which gives us the relations

l2s = g′sl
′2
s and gs =

1

g′s
. (185)

And from this, we can also find that

D5 ↔ NS5 (186)

D7 ↔ Vortex , (187)

where the vortex is a codimension 2 object. We can also see that we again have an S-duality

as the strong and weak coupling are interchanged.

So far, we have disregarded that we not only have a dilaton, but also an axion. And recall

that the moduli space of type IIB is

M =
SL(2,R)
SO(2)

. (188)

This, as it turns out, gives the geometry of a torus. We shall look at exactly what we mean by

this before returning to the duality.

Aside: Geometry of a torus

Consider an unfolded torus, with sides identified, see figure 17. We can now define two param-

eters

τ = i
R1

R2

+
θ

2π
and A = R1R2 , (189)

43



9. Dualities

encoding its shape and size, respectively. The torus is invariant under modular transforma-

tions, which are transformations of the form

τ → aτ + b

cτ + d
where

a b

c d

 ∈ SL(2,Z) . (190)

These transformations are generated by

τ → −1

τ
and τ → τ + 1 , (191)

where we will shortly see their meaning in the context of type IIB.

Figure 17: Torus parameters.

SL(2,Z) for type IIB

This can now be applied to type IIB. We define

τ = i
1

gs
+
C(0)

2π
, (192)

where 1
gs

corrsponds to the dilaton and C(0) is the axion. Then (191) translates into

τ = i
1

gs
7→ −1

τ
= −gs

i
= igs︸ ︷︷ ︸

S-duality

, (193)

which is what we had already found, and

τ = i
1

gs
+
C(0)

2π
7→ τ + 1 = i

1

gs
+
C(0)

2π
+ 1 = i

1

gs
+
C(0) + 2π

2π
, (194)
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which is just saying that C(0) = C(0) + 2π, as we already know since C(0) ∈ S1.

We may also incorporate (p, q) strings and branes into our analysis, for these objects, the

tension can be written as

T(p,q) string =
1

l2s
|p+ qτ | (195)

T(p,q) 5-brane =
1

gsl2s
|p+ qτ | . (196)

9.2.3 Type IIA on S1 ↔ Type IIB on S1

Since type IIA and type IIB reduce to the same theory in 9-dimensions, there will be a duality

between the two theories on different circles. We have the parametrs: gA, lA, RA in type IIA and

gB, lB, RB in type IIB. As we have 3 terms, we will also need 3 equations defining the duality.

On dimensional grounds, we know that a Dp brane in one theory on a small circle becomes a

D(p− 1) brane in the other theory. Let us consider the following

F1 ↔ F1 (197)

D2 on S1 ↔ D1 (198)

D2 ↔ D3 on S1 . (199)

From (197), we can immediately tell that

l2A = l2B , (200)

which we hence just call l2s . The other equations, (198) and (199), give us

RA

gAl3s
=

1

gBl2s
and

1

gAl3s
=

RB

gBl4s
, (201)

after a little rearranging, they read

RARB = l2s and
RA

g2A
=
RB

g2B
. (202)

Historically, T-duality was first seen to exchange the momentum mode with the winding

mode of an F1 string on a circle, i.e.

Winding Mode

(
T =

RA

l2s

)
↔ Momentum Mode

(
T =

1

RB

)
. (203)

The mass of this string is given by

m(w,n) =
wR

l2s
+

|n|
R
, (204)
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and T-duality exchanges (w, n) ↔ (n,w).

9.2.4 M theory on T 2 ↔ Type IIB on S1

By the same reason that we have a duality between type IIA on S1 and type IIB on S1 (due to

both theories reducing to the same 9 dimensional theory), we will also have a duality between

M-theory on T 2 and type IIB on S1, as well as type IIA for that matter.

As we are still in 9 dimensions, we have three parameters. For type IIB, they are the same

as before lB, gB and RB. For M theory they are lp, R1 and R2, where R1 and R2 correspond to

the two radii of the torus.

Doing a step-by-step analysis, going from M theory to type IIA via S-duality and from type

IIA to type IIB via T-duality (see figure 18 and 19), we can see what sort of branes are dual

Figure 18: M2 brane to different object in type IIB.

to each other in M theory on T 2 and type IIB on S1. From this, we choose 3 dualities (for 3

parameters), say,

M2 ↔ D3 on S1 (205)

M2 on S1
R2

↔ D1 (206)

M2 on S1
R1

↔ F1 . (207)
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Figure 19: M5 brane to different object in type IIB.

One can then straightforwardly compute the relations to be

l3p = gB
l4B
RB

, R1 = gB
l2B
RB

and R2 =
l2B
RB

. (208)

If we want to extend our analysis to (p, q) strings, we need to consider the different ways of

compactifying on a torus. These are called (p, q) cycles and can be seen in figure 20. If p and q

are not coprime, we have that, for example, (3, 9) = 3× (1, 3). We begin by looking at the two

Figure 20: Different (p, q) cycles.

base cases of M2 becoming an F1 or D1 brane, depending on which circle it is compactified on.

The tension of a general (p, q) string in type IIB may be written as

T(p,q) string =
1

l2B
|p+ qτ | = 1

l2B

√
p2 +

q2

g2B
, (209)
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and using the inverse equations of (208) gives us

T(p,q) string =
R1

l3p

√
p2 + q2

R2
2

R2
1

(210)

=
1

l3p

√
p2R2

1 + q2R2
2 (211)

= TM2 on (p,q) cycle , (212)

where in the last line we recognise this as the tension of an M2 brane on a (p, q) cycle.

There is another interesting feature we can look at if we consider M2 wrapping both circles,

giving us the momentum mode of type IIB. The tensions for this case reads

A

l3p
=

1

RB

, (213)

where we defined A = R1R2 (the size modulus of the torus). This equation is telling us that, in

the limit of the torus becoming smaller, normal type IIB (not on S1) is equivalent to M theory

on a very small torus.

9.2.5 Overview

We can view the various theories in this section as being different limits of M theory on T 2, see

figure 21. In the case of R1, R2 → ∞, we have genuine M theory/11d supergravity. If one of

images/Mtheory_limits.png

Figure 21: Various limits of M theory on T 2.

the radii goes to zero, R1 → 0, we simply get type IIA theory by dimensional reduction. And,

lastly, when both radii go to zero R1, R2 → 0 we get type IIB. But, depending on which edge
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we transverse, we either get the duality relation

gB =
R1

R2

or g′B =
R2

R1

, (214)

which is, of course, nothing but the type IIB self-duality statement gB = 1/g′B.

9.3 Dualities for theories with 16 supercharges

9.3.1 Type I ↔ Heterotic SO(32)

Recall that type I is equivalent to type IIB with an O9− plane and 16 D9 branes stacked on

top of it. In type I, we have a D1 and a D5 brane, in heterotic SO(32), we do not have an RR

sector, and therefore the only branes we have are F1 and NS5. It follows that

D5 ↔ NS5 (215)

D1 ↔ F1 , (216)

and the equations relating the two theories are thus

gI =
1

gH
and l2I = gH l

2
H , (217)

which is akin to the self-duality of type IIB.

9.3.2 Heterotic SO(32) on S1 ↔ Heterotic E8 × E8 on S1

Similar to the T-duality between type IIA and type IIB theories, we have a duality between

the two heterotic theories. The duality is characterised by

RSO(32)RE8×E8 = l2s and
RSO(32)

g2SO(32)

=
RE8×E8

g2E8×E8

. (218)

9.3.3 Type I on S1 ↔ Type I’

As we have seen plenty of times by now, type I can be constructed by placing an O9− plane and

16 D9 branes in type IIB. If we now compactify on a circle, we know that there is a T-duality

between type IIA and type IIB, and therefore there is a duality between type I on S1 and type

IIA on S1/Z2 ≃ I, which is usually referred to as type I’. This is best seen in figure 22.

9.3.4 Overview

9.4 Note on additional theories with 16 supercharges

9.5 Summary of dualities
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Figure 22: Construction of type I’ by compactifying a spatial direction of type I. In the last picture
on the right we have added the 16 D8 branes back in.
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10 Theories with 8 Supercharges

Since branes break half the supersymmetry, we want to consider constructions with branes that

give us 8 supercharges, i.e. 1/4 of the initial 32 supercharges. There are 2 brane systems which

accomplish that, as seen in figure 23.

Figure 23: Brane constructions for theories with 8 supercharges.

10.1 D5-D9 brane system

As a concrete example, let us take a D5 brane inside a D9 brane. The D5 brane breaks the

spacetime into R1,5×R4 ⊂ R1,9 thus we will have a SO(4) ≃ SU(2)×SU(2) symmetry. This is

not a full R-symmetry like we had in the case of theories with 16 supercharges. Recall that for

6-dimensional theories with (p, q) supersymmetry, and 8(p+ q) supercharges, the R-symmetry

is given by

Sp(p)× Sp(q) . (219)

Because we only have 8 supercharges on the world volume of the D5 brane, our R-symmetry is

Sp(1) ≃ SU(2). Going back to the symmetry of the R4 space, we therefore have

SO(4) ≃ SU(2)︸ ︷︷ ︸
R-symmetry

× SU(2)︸ ︷︷ ︸
Global Symmetry

. (220)

Let us also investigate the type of multiplets we can have. For 8 supercharges, we want

a multiplet with 28/4 = 4 degrees of freedom transforming under the little group SO(4) and

R-symmetry SU(2). Since bosonic and fermionic degrees of freedom still have to match we

have the so-called half-hyper multiplet

h = [00]4[1]R + [01]4[0]R . (221)

From this, we can construct various other multiplets, such as the vector, tensor and gravity
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multiplets:

vplet: h[10][0] = [11][0] + [10][1] (222)

tplet: h[01][0] = [02][0] + [00][0] + [01][1] (223)

gplet: h[21][0] = [22][0] + [02][0] + [21][1] . (224)

On the D9 brane, we initially have a vector multiplet V10 but due to the presence of the D5

brane this will decompose as

V10 = [1000]8 + [0001]8 → [11][00] + [01][01]︸ ︷︷ ︸
vplet

+ [00][11] + [10][10]︸ ︷︷ ︸
hplet =2h

(225)

= V6 +H6 (226)

since the spacetime symmetry is now SO(4)× SO(4) ≃ SO(4)× SU(2)R × SU(2)G ⊂ SO(8).

For the spacetime perspective we can draw a picture like in figure 24. Since the D5 branes

are codimension 4 objects and since we are in type I, they are instantons with gauge group

SO(32). All the possible configurations of the D5 branes make up the moduli space of n SO(32)

instantons on R4. On the D5 brane, we have a novel feature, instead of having a U(1) gauge

Figure 24: Spacetime perspective of n D5 branes inside D9 brane.

symmetry, the presence of the O9− plane induces a Sp(1) gauge symmetry. And for n D5 branes

coinciding, we have a Sp(n) ⊂ Sp(1)n gauge symmetry. We can summarise this information in

a quiver diagram

Sp(n) SO(32)
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where the loop stands for strings in the adjoint representation of Sp(n), Λ2[10...0]Sp(n), and

the edge stands for the strings in the bifundamental representation of Sp(n) × SO(32), i.e.

[10...0]Sp(n)[10...0]SO(32). We can also have strings from the D9 brane to the D9 brane, they will

correspond to parameters on the world volume of the Dp brane.

10.2 Dp-D(p+ 4) brane system

We consider the Dp-D(p+4) brane system, of which our previous case D5-D9 is a special case.

But in many regards, the limiting −1 ≤ p ≤ 4 in the analysis makes things easier. Since the

heavier brane does not occupy all spacetime directions, we can have transverse and parallel

directions with the lighter brane, schematically this is shown in figure 25. As we have already

Figure 25: Dp-D(p + 4) brane system where we have 4 parallel directions and (5 − p) transverse
directions.

seen, the number of scalars in the different multiplets are

Hd : 4 (227)

Vd : 6− d (228)

Td : 1 . (229)

This means that the hyper multiplet correctly encodes the degrees of freedom from the direc-

tions parallel to the heavier brane and the vector multiplet encodes the once transverse to it.

For k Dp branes next to n D(p+ 4) brane, we again write a quiver:

U(k) U(n)
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From the perspective of the Dp brane, U(n) is a global symmetry, but from the perspective of

the D(p+ 4) brane it is a gauge symmetry.

When the lighter brane is away from the heavier brane, the scalars in the vector multiplet,

which parameterise the distance, form a moduli space called the Coulomb branch. The num-

ber of scalars is given by k− (6−d) for different dimensions. The scalars in the hypermultiplet

have mass which is given by the distance of the brane. But if the lighter brane moves inside the

heavier brane, the degrees of freedom in the hypermultiplet become massless and can admit a

vacuum expectation value, whereas the scalars in the vector multiplet are fixed to zero. The

moduli space of the scalars in the hypermultiplet is called the Higgs branch.

Furthermore, if the Dp branes are inside the D(p + 4) branes, the Dp branes look like

instantons. This tells us that the Higgs branch is the same as the moduli space of k U(n)

instantons on R4.

10.3 D3-NS5 brane system
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A Derivation of Dimension Formulas

A.1 An

Recall that An ≃ su(n+ 1) with Dynkin diagram

· · ·

and its dimension and number of roots are given by

dim An = dim SU(n+ 1) = (n+ 1)2 − 1 = n2 + 2n (230)

(# of roots) = n2 + 2n− (n) = n2 + n . (231)

The Cartan matrix of An is

Cij =



2 −1

−1 2 −1

...

−1 2 −1

−1 2


. (232)

Let {ei} with i = 1, ..., n+ 1 be an orthonormal basis such that (ei, ej) = δij. Then we can

construct the roots of An as follows

fundamental : α1 = e1 − e2 , α2 = e2 − e3 , . . . , αn = en − en+1 (233)

positive : ei − ej , i < j (234)

negative : ei − ej , i > j , (235)

which correctly amounts to (n + 1)2 − (n + 1) = n2 + n different roots. We can also confirm

that we reproduce the Cartan matrix with this choice of basis. The inner products of various

simple roots are

(αi, αi) = (ei − ei+1, ei − ei+1) = 2 (236)

(αi, αi+1) = (ei − ei+1, ei+1 − ei+2) = −1 (237)

(αi, αj>i+1) = 0 . (238)
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Therefore, the Cartan matrix elements are

Ci,i+1 = 2
(αi, αi+1)

(αi, αi+1)
= 2

−1

2
= −1 , (239)

with the Cii components being trivially satisfied and all others being equal to zero.

Before we can proceed to the Weyl dimension formula, we want a systematic way of ex-

pressing positive roots in terms of the fundamental roots. This can be achieved by noting that

for i < j

ei − ej = ei − ei+1 + ei+1 − ei+2 + · · · − ej−1 + ej−1 − ej

= αi + αi+1 + · · ·+ αj−1

= ωnCni + ωnCn,i+1 + · · ·+ ωnCn,j−1

(240)

where in the last line we have expressed the roots in terms of fundamental weights ω.

The Weyl dimension formula reads

dim [n1...nn] =
∏
β∈Φ+

([n1 + 1, . . . , nn + 1], β)

([1 . . . 1], β)

= α1 . . . αn α1 + α2 . . . αn−1 + αn

× α1 + α2 + α3 . . . αn−2 + αn−1 + αn . . .

(241)

where β is any positive root and the αi still refer to the fundamental roots. We have split the

contributions from different positive roots in terms of their composition of fundamental roots,

which we can now inspect on a case-by-case basis. We begin with the simplest

α1 =
([n1 + 1, . . . , nn + 1], α1)

([1 . . . 1], α1)

=
(n1 + 1)C−1

1a (αa, α1) + · · ·+ (nn + 1)C−1
na (αa, α1)

C−1
1a (αa, α1) + · · ·+ C−1

na (αa, α1)
,

(242)

where we used

[n1 + 1, . . . , nn + 1] = (n1 + 1)ω1 + · · ·+ (nn + 1)ωn

= (n1 + 1)C−1
1a αa + · · ·+ (nn + 1)C−1

na αa ,
(243)

and
[1, . . . , 1] = ω1 + · · ·+ ωn

= C−1
1a αa + · · ·+ C−1

na αa .
(244)

Since for all fundamental roots we have that (αi, αi) = 2, this also means that (αi, αj) = Cij.
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The above simplifies very nicely to

α1 =
(n1 + 1)C−1

1a Ca1 + · · ·+ (nn + 1)C−1
na Ca1

C−1
1a Ca1 + · · ·+ C−1

na Ca1

=
n1 + 1

1
.

(245)

This is the bulk of the calculation done, and the other cases follow straightforwardly. Consider

an element of the product for a positive root made up of 2 fundamental roots

α1 + α2 =
([n1 + 1, . . . , nn + 1], α1 + α2)

([1, . . . , 1], α1 + α2)

=
([n1 + 1, . . . , nn + 1], α1) + ([n1 + 1, . . . , nn + 1], α2)

([1, . . . , 1], α1) + ([1, . . . , 1], α2)

=
n1 + 1 + n2 + 1

1 + 1
=
n1 + n2 + 2

2
.

(246)

And, therefore, the Weyl dimension formula for a representation of An is

dim [n1 . . . nn] = (n1 + 1) . . . (nn + 1)
(n1 + n2 + 2)

2
. . .

(nn−1 + nn + 2)

2
(n1 + n2 + n3 + 3)

3
. . .

(n1 + n2 + n3 + n4 + 4)

4
. . . .

(247)

A.2 Bn

Instead of repeating the whole calculation, we will focus on the novel aspects for Bn ≃ so(2n+1)

and at times not be as rigorous as for the case of An. Most fundamentally, the difference is

that we now have a short root, as can be seen in the Dynkin diagram

· · ·

This has to be reflected in our choice of orthonormal basis. As such, let {ei} with i = 1, . . . , n

be an orthonormal basis and we define the fundamental roots to be

α1 = e1 − e2 , . . . , αn−1 = en−1 − en , αn = en . (248)

One can (and should) check that this indeed reproduces the Cartan matrix elements correctly.

A quick calculation shows that there are n2 positive roots, which we can choose to be

ei , ei − ej , ei + ej with i < j . (249)
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Or, expressed in terms of fundamental roots,

ei = αi + · · ·+ αn (250)

ei − ej = αi + · · ·+ αj−1 (251)

ei + ej = αi + · · ·+ αj−1 + 2αj + · · ·+ 2αn . (252)

The Weyl dimension formula in terms of block elements is

dim [n1 . . . nn] =
∏
β∈Φ+

([n1 + 1, . . . , nn + 1], β)

([1 . . . 1], β)

=

(
α1 . . . αn

)(
α1 + α2 . . . αn−1 + αn

)(
αn−1 + 2αn

)
(
α1 + α2 + α3 . . .

)(
αn−2 + αn−1 + 2αn αn−2 + 2αn−1 + 2αn

)
. . . .

(253)

For the blocks with a single fundamental root, all except the last one follow in exactly the same

way as for An. The last one is

αn =
([n1 + 1, . . . , nn + 1], αn)

([1, . . . , 1], αn)

=
· · ·+ (nn + 1)C−1

na (αa, αn)

· · ·+ C−1
na (αa, αn)

,

(254)

in a similar manner as before, we note that (αa, αn) =
1
2
(αn, αn)Can = 1

2
Can, and hence

αn =
(nn + 1)1

2
1
2

= nn + 1 . (255)

And for other boxed elements that include the last root, we find

αn−1 + αn =
nn−1 + 1 + 1

2
(nn + 1)

1 + 1
2

=
2nn−1 + nn + 3

3

(256)

αn−1 + 2αn =
nn−1 + 1 + 2

2
(nn + 1)

1 + 2
2

=
nn−1 + nn + 2

2
.

(257)
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And, finally, we have the Weyl dimension formula for representations of Bn

dim [n1 . . . nn] =

(
(n1 + 1) . . . (nn + 1)

)(
n1 + n2 + 2

2
. . .

nn−1 + nn + 2

2

)
(
2nn−1 + nn + 3

3

)(
n1 + n2 + n3 + 3

3
. . .

nn−2 + nn−1 + nn + 3

3

)
(
nn−2 + 2nn−1 + nn + 4

4

2nn−2 + 2nn−1 + nn + 5

5

)
. . .

(258)

where we have slightly reshuffled the order of the roots such that it takes a nicer form.

A.3 Cn

A.4 Dn

Again, the root structure of Dn ≃ so(2n) is best encapsulated in the Dynkin diagram

· · ·

and the corresponding Cartan matrix

2 −1

−1 2 −1

· · ·

−1 2 −1 −1

−1 2 0

−1 0 2


. (259)

We can express the fundamental roots in terms of an orthonormal basis {ei} with i = 1, . . . , n

as

α1 = e1 − e2 , . . . , αn−1 = en−1 − en , αn = en−1 + en . (260)

The n2 − n positive roots can be expressed as

ei − ej , ei + ej with i < j . (261)
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The first set of these is easily expressed for all i < j in terms of fundamental roots as

ei − ej = αi + · · ·+ αj−1 . (262)

For the second set, we split it up into the cases before we reach the fork in the Dynking diagram

and the ones including the fork

ei + ej = αi + · · ·+ αj−1 + 2αj + · · ·+ 2αn−2 + αn−1 + αn for j ≤ n− 2 (263)

ei + en−1 = αi + · · ·+ αn−2 + αn−1 + αn (264)

ei + en = αi + · · ·+ αn−2 + αn (265)

en−1 + en = αn . (266)

The Weyl dimension formula can then be written as

dim [n1 . . . nn] =
∏
β∈Φ+

([n1 + 1, . . . , nn + 1], β)

([1 . . . 1], β)

=

(
α1 . . . αn

)(
α1 + α2 . . . αn−2 + αn−1

)(
αn−1 + αn

)(
αn−2 + αn

)
(
α1 + α2 + α3 . . . αn−3 + αn−2 + αn−1

)(
αn−2 + αn−1 + αn

)
(
αn−3 + αn−2 + αn

)
. . . .

(267)

where we have put terms in separate brackets if they belong to a different case. Since they are

all the same size, we can use the results from A.1, and the dimension formula for Dn becomes

dim [n1 . . . nn] = (n1 + 1) . . . (nn + 1)

(
n1 + n2 + 2

2
. . .

nn−1 + nn + 2

2

)(
nn−2 + nn + 2

2

)
(
n1 + n2 + n3 + 3

3
. . .

nn−2 + nn−1 + nn + 3

3

)(
nn−3 + nn−2 + nn + 3

3

)
. . .

(268)

where we have combined two of the grouped brackets together as they have the same form.
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